Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 18(9): 6541-6546, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29677830

RESUMO

A series of vanadium-nickel-alumina (xVNA) catalysts were prepared by a single-step sol-gel method with a variation of vanadium content (x, wt%) for use in the hydrogen production by steam reforming of natural gas. The effect of vanadium content on the physicochemical properties and catalytic activities of xVNA catalysts in the steam reforming of natural gas was investigated. It was found that natural gas conversion and hydrogen yield showed volcano-shaped trends with respect to vanadium content. It was also revealed that natural gas conversion and hydrogen yield increased with decreasing nickel crystallite size.

2.
J Nanosci Nanotechnol ; 18(9): 6547-6551, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29677831

RESUMO

A serious of mesoporous La-zeolite X catalysts (La-x-Zeol X (x = 0, 0.25, 0.5, 0.75, 1.0, and 2.0)) were prepared by a hydrothermal method with a variation of carbon template content (x, wt%). The prepared catalysts were applied to the isobutane/2-butene alkylation. Mesopore volume of the catalysts increased with increasing carbon template content, while acidity of the catalysts decreased with increasing carbon template content. In the catalytic reaction, productivity of C8 alkylate (C8 alkylate g/g-catalyst) and selectivity for C8 alkylate showed volcano-shaped trends with respect to carbon template content. Among the catalysts, La-0.5-Zeol X showed the highest productivity and selectivity for C8 alkylate. The maximum productivity and selectivity for C8 alkylate over La-0.5-Zeol X were due to the offset of two opposite trends between mesopore volume and acidity of La-x-Zeol X catalysts.

3.
J Nanosci Nanotechnol ; 14(11): 8867-72, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25958619

RESUMO

Copper-containing mesoporous carbons (XCu-MC) with different copper content (X = 8.0, 12.7, 15.9, 23.3, and 26.8 wt%) were prepared by a single-step surfactant-templating method. Rhenium nano-catalysts supported on copper-containing mesoporous carbons (Re/XCu-MC) were then prepared by an incipient wetness method. Re/XCu-MC (X = 8.0, 12.7, 15.9, 23.3, and 26.8 wt%) catalysts were characterized by nitrogen adsorption-desorption isotherm, HR-TEM, FT-IR, and H2- TPR analyses. Liquid-phase hydrogenation of succinic acid to 1,4-butanediol (BDO) via dimethyl succinate (DMS) was carried out over Re/XCu-MC catalysts in a batch reactor. The effect of copper content on the physicochemical properties and catalytic activities of Re/XCu-MC catalysts in the hydrogenation of succinic acid to BDO was investigated. Re/XCu-MC catalysts retained different physicochemical properties depending on copper content. In the hydrogenation of succinic acid to BDO, yield for BDO showed a volcano-shaped trend with respect to copper content. Thus, an optimal copper content was required to achieve maximum catalytic performance of Re/XCu-MC. It was also observed that yield for BDO increased with increasing the amount of hydrogen consumption by copper in the Re/XCu-MC catalysts.


Assuntos
Butileno Glicóis/química , Cobre/química , Nanopartículas Metálicas/química , Rênio/química , Ácido Succínico/química , Butileno Glicóis/análise , Carbono/química , Hidrogenação , Succinatos/química , Ácido Succínico/análise
4.
J Nanosci Nanotechnol ; 14(11): 8884-90, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25958622

RESUMO

Cesium-exchanged Cs(x)H(3.0-x)PW12O40 (X = 2.0, 2.3, 2.5, 2.8, and 3.0) heteropolyacid nanocatalysts were prepared, and they were applied to the catalytic decomposition of lignin model compound to aromatics. Successful formation of cesium-exchanged Cs(x)H(3.0-x)PW12O40 (X = 2.0-3.0) catalysts was confirmed by FT-IR, ICP-AES, and XRD measurements. 2,3-Dihydrobenzofuran was employed as a lignin model compound for representing ß-5 bond in lignin. Phenol, ethylbenzene, and 2-ethylphenol were mainly produced by the catalytic decomposition of 2,3-dihydrobenzofuran. Conversion of 2,3-dihydrobenzofuran and total yield for main products (phenol, ethylbenzene, and 2-ethylphenol) were closely related to the surface acidity of Cs(x)H(3.0-x)PW12O40 (X = 2.0-3.0) catalysts. Conversion of 2,3-dihydrobenzofuran and total yield for main products increased with increasing surface acidity of the catalysts. Among the catalysts tested, Cs2.5H0.5PW12O40 with the largest surface acidity showed the highest conversion of 2,3-dihydrobenzofuran and the highest total yield for main products. These results indicate that surface acidity of Cs(x)H(3.0-x)PW12O40 (X = 2.0-3.0) catalysts served as an important factor determining the catalytic performance in the decomposition of 2,3-dihydrobenzofuran to aromatics.


Assuntos
Derivados de Benzeno/química , Benzofuranos/química , Césio/química , Nanoestruturas/química , Ácidos , Derivados de Benzeno/análise , Benzofuranos/análise , Lignina , Propriedades de Superfície
5.
J Clin Med ; 13(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38792380

RESUMO

Background: Management of hepatic hemangioma (HH) in infancy ranges from close monitoring to surgical resection. We analyzed the clinical characteristics and outcomes of HH according to its treatment options, with particular focus on challenging cases. Methods: Data of patients diagnosed with HHs in their first year of life and followed up for at least 1 year were retrospectively reviewed and divided into treatment and observation groups. Serial imaging results, serum alpha-fetoprotein (AFP) levels, medications, and clinical outcomes were compared. The detailed clinical progress in the treatment group was reviewed separately. Results: A total of 87 patients (75 in the observation group and 12 in the treatment group) were included. The median HH size at the initial diagnosis and the maximum size were significantly larger in the treatment group than the observation group (2.2 [0.5-10.3] cm vs. 1.0 [0.4-4.0] cm and 2.1 [0.7-13.2] vs. 1.1 [0.4-4.0], respectively; all p < 0.05]. The median initial and last serum AFP levels were significantly higher in the treatment group than in the observation group (76,818.7 vs. 627.2 and 98.4 vs. 8.7, respectively; all p < 0.05). Serum AFP levels in both groups rapidly declined during the first 3 months of life and were almost undetectable after 6 months. Among the challenging cases, a large (14 × 10 × 6.5 cm sized) focal HH was successfully treated using stepwise medical-to-surgical treatment. Conclusions: Patients with large HH and mild symptoms can be treated using stepwise pharmacotherapy. More aggressive surgical treatment of tumors unresponsive to initial pharmacotherapy may help shorten the treatment period and improve outcomes.

6.
J Nanosci Nanotechnol ; 13(12): 7944-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24266169

RESUMO

Graphene-containing carbon aerogel was prepared by a polycondensation of resorcinol with formaldehyde using chemically exfoliated graphene oxide in ambient conditions, and its electrochemical performance as an electrode for supercapacitor was examined. The effect of pH in the preparation of RFGO (resorcinol-formaldehyde and graphene oxide) solution on the physical and electrochemical properties of graphene-containing carbon aerogel was investigated. For comparison, graphene-free carbon aerogel was also prepared. Among the samples, graphene-containing carbon aerogel prepared at pH 6.5 showed the highest BET surface area (733 m2/g) and the largest pore volume (1.39 cm3/g) with well-developed porous structure. Electrochemical properties of graphene-containing carbon aerogel and graphene-free carbon aerogel electrodes were measured by cyclic voltammetry at a scan rate of 10 mV/sec and by charge/discharge test at constant current of 1 A/g in 6 M KOH electrolyte. From cyclic voltammetry measurements, it was found that graphene-containing carbon aerogel prepared at pH 6.5 showed higher specific capacitance than graphene-free carbon aerogel (63 F/g vs. 54 F/g). Specific capacitance calculated by charge/discharge test also revealed that graphene-containing carbon aerogel prepared at pH 6.5 showed higher specific capacitance than graphene-free carbon aerogel (85 F/g vs. 79 F/g). Thus, electrochemical performance of graphene-containing carbon aerogel prepared at pH 6.5 could be enhanced by adding graphene into carbon aerogel.


Assuntos
Carbono/química , Eletroquímica/métodos , Géis , Grafite/química
7.
J Nanosci Nanotechnol ; 13(12): 8121-6, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24266203

RESUMO

Etherification of n-butanol to di-n-butyl ether was carried out over various structural classes of heteropolyacid (HPA) catalysts, including Keggin- (H3PW12O40), Wells-Dawson- (H6P2W18O62), and Preyssler-type (H14[NaP5W30O110]) HPA catalysts. Successful formation of HPA catalysts was well confirmed by FT-IR, 31P NMR, and ICP-AES analyses. Acid properties of HPA catalysts were determined by NH3-TPD (temperature-programmed desorption) measurements. Acid strength of the catalysts increased in the order of H14[NaP5W30O110] < H6P2W18O62 < H3PW12O40. The catalytic performance of HPA catalysts was closely related to the acid strength of the catalysts. In the etherification of n-butanol to di-n-butyl ether over various structural classes of HPA catalysts, Conversion of n-butanol and yield for di-n-butyl ether increased with increasing acid strength of HPA catalysts. Among the catalysts tested, Keggin-type (H3PW12O40) HPA catalyst with the strongest acid strength showed the best catalytic performance. Acid strength of HPAs served as an important factor determining the catalytic performance in the etherification of n-butanol to di-n-butyl ether.

8.
J Nanosci Nanotechnol ; 13(12): 7963-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24266173

RESUMO

Cesium-exchanged heteropolyacid (Cs(x)H3.0-xPW12O40) was impregnated onto activated carbon aerogel (ACA) with a variation of cesium content (X = 2.0, 2.3, 2.5, 2.7, and 3.0) in order to provide acid sites to ACA. Palladium catalysts were then supported on Cs(x)H3.0-xPW12O40-impregnated activated carbon aerogel (Pd/Cs(x)H3.0-xPW12O40/ACA, X = 2.0-3.0) by an incipient wetness impregnation method for use in the decomposition of lignin model compound to aromatics. 4-Phenoxyphenol was used as a lignin model compound for representing 4-O-5 linkage of lignin. In the catalytic decomposition of 4-phenoxyphenol over Pd/Cs(X)H3.0-xPW12O40/ACA, cyclohexanol, benzene, and phenol were mainly produced. Conversion of 4-phenoxyphenol and total yield for main products (cyclohexanol, benzene, and phenol) were closely related to the acidity of Pd/Cs(x)H3.0-xPW12O40/ACA. Conversion of 4-phenoxyphenol and total yield for main products increased with increasing acidity of Pd/Cs(x)H3.0-xPW12O40/ACA. Among the catalysts tested, Pd/Cs2.5H0.5PW12O40/ACA catalyst with the largest acidity showed the highest conversion of 4-phenoxyphenol and total yield for main products. Therefore, it is concluded that acidity of catalysts would be an important factor determining the catalytic performance in the decomposition of 4-phenoxyphenol.


Assuntos
Carbono/química , Césio/química , Géis , Paládio/química , Éteres Fenílicos/química , Catálise , Microscopia Eletrônica de Transmissão , Difração de Raios X
9.
J Nanosci Nanotechnol ; 13(11): 7504-10, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24245282

RESUMO

Phosphorous-modified microporous and mesoporous ZSM-5 catalysts (XP/C-ZSM5) were prepared with a variation of phosphorous content (X = 0.17, 0.3, 0.7, 1.4, and 2.7 wt%), and they were applied to the production of light olefins (ethylene and propylene) through catalytic cracking of C5 raffinate. The effect of phosphorous content on the physicochemical properties and catalytic activities of XP/C-ZSM5 catalysts was investigated. It was revealed that physicochemical properties of XP/C-ZSM5 catalysts were strongly influenced by phosphorous content. Strong acidity of XP/C-ZSM5 catalysts decreased with increasing phosphorous content. In the catalytic cracking of C5 raffinate, both conversion of C5 raffinate and yield for light olefins (ethylene and propylene) showed volcano-shaped curves with respect to strong acidity. This result indicates that strong acidity of XP/C-ZSM5 catalysts played an important role in determining the catalytic performance in the catalytic cracking of C5 raffinate. Among the catalysts tested, 0.3P/C-ZSM5 catalyst with moderate strong acidity showed the best catalytic performance.


Assuntos
Alcanos/química , Alcenos/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Fósforo/química , Zeolitas/química , Catálise , Cristalização/métodos , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Peso Molecular , Tamanho da Partícula , Porosidade , Propriedades de Superfície
10.
J Nanosci Nanotechnol ; 13(12): 8110-5, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24266201

RESUMO

Magnesia-zirconia (MgO-ZrO2) support was prepared by a sol-gel method, and magnesium vanadate nano-catalysts supported on magnesia-zirconia (X-Mg3(VO4)2/MgO-ZrO2) were then prepared by a wet impregnation method with a variation of vanadium content (X = 6.6, 9.9, 12.8, 15.2, and 19.1 wt%). X-Mg3(VO4)2/MgO-ZrO2 nano-catalysts were applied to the oxidative dehydrogenation of n-butane to n-butene and 1,3-butadiene. The formation of X-Mg3(VO4)2/MgO-ZrO2 nano-catalysts was well confirmed by XRD, XPS, and ICP-AES analyses. 15.2-Mg3(VO4)2/MgO-ZrO2 and 19.1-Mg3(VO4)2/MgO-ZrO2 catalysts experienced a catalyst deactivation, while the other Mg3(VO4)2/MgO-ZrO2 catalysts showed a stable catalytic performance during the whole reaction time. The effect of oxygen property of X-Mg3(VO4)2/MgO-ZrO2 nano-catalysts on the catalytic performance in the oxidative dehydrogenation of n-butane was investigated. Experimental results revealed that oxygen capacity of the catalyst was closely related to the catalytic performance, while oxygen mobility of the catalyst played an important role in the catalyst stability. Among the catalysts tested, 12.8-Mg3(VO4)2/MgO-ZrO2 catalyst showed the best catalytic performance in terms of yield for TDP (total dehydrogenation products).


Assuntos
Butanos/química , Hidrogênio/química , Magnésio/química , Nanoestruturas , Vanadatos/química , Zircônio/química , Catálise , Oxirredução
11.
J Nanosci Nanotechnol ; 13(12): 8116-20, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24266202

RESUMO

CeO2(X)-ZnO(1-X) (X = 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0) nano-catalysts were prepared by a co-precipitation method with a variation of CeO2 content (X, mol%), and they were applied to the direct synthesis of dimethyl carbonate from methanol and carbon dioxide. Successful formation of CeO2(X)-ZnO(1-X) nano-catalysts was well confirmed by XRD analysis. The amount of DMC produced over CeO2(X)-ZnO(1-X) catalysts exhibited a volcano-shaped curve with respect to CeO2 content. Acidity and basicity of CeO2(X)-ZnO(1-X) nano-catalysts were measured by NH3-TPD and CO2-TPD experiments, respectively, to elucidate the effect of acidity and basicity on the catalytic performance in the reaction. It was revealed that the catalytic performance of CeO2(X)-ZnO(1-X) nano-catalysts was closely related to the acidity and basicity of the catalysts. Amount of dimethyl carbonate increased with increasing both acidity and basicity of the catalysts. Among the catalysts tested, CeO2(0.7)-ZnO(0.3) with the largest acidity and basicity showed the best catalytic performance in the direct synthesis of dimethyl carbonate from methanol and carbon dioxide.


Assuntos
Dióxido de Carbono/química , Cério/química , Formiatos/síntese química , Metanol/química , Nanoestruturas , Óxido de Zinco/química
12.
J Nanosci Nanotechnol ; 13(11): 7448-53, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24245272

RESUMO

Copper-containing mesoporous carbon (Cu-MC) was prepared by a single-step surfactant-templating method. For comparison, copper-impregnated mesoporous carbon (Cu/MC) was also prepared by a surfactant-templating method and a subsequent impregnation method. Rhenium catalysts supported on copper-containing mesoporous carbon and copper-impregnated mesoporous carbon (Re/Cu-MC and Re/Cu/MC, respectively) were then prepared by an incipient wetness method, and they were applied to the liquid-phase hydrogenation of succinic acid to 1,4-butanediol (BDO). It was observed that copper in the Re/Cu-MC catalyst was well incorporated into carbon framework, resulting in higher surface area and larger pore volume than those of Re/Cu/MC catalyst. Therefore, Re/Cu-MC catalyst showed higher copper dispersion than Re/Cu/MC catalyst, although both catalysts retained the same amounts of copper and rhenium. In the liquid-phase hydrogenation of succinic acid to BDO, Re/Cu-MC catalyst showed a better catalytic activity than Re/Cu/MC catalyst. Fine dispersion of copper in the Re/Cu-MC catalyst was responsible for its enhanced catalytic activity.


Assuntos
Butileno Glicóis/química , Carbono/química , Hidrogênio/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Rênio/química , Ácido Succínico/química , Catálise , Cristalização/métodos , Hidrogenação , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Porosidade , Propriedades de Superfície
13.
J Nanosci Nanotechnol ; 12(7): 5864-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22966671

RESUMO

Polyatom-substituted H4PW11M1O40 Keggin and H7P2W17M1O62 (M = Nb, Ta) Wells-Dawson heteropolyacid (HPA) catalysts were investigated by scanning tunneling microscopy (STM) and tunneling spectroscopy to elucidate their redox property and oxidation catalysis. STM images clearly showed that HPAs formed nano-structured monolayer arrays on graphite surface. In tunneling spectroscopy, HPAs exhibited a distinctive current-voltage behavior called negative differential resistance (NDR). NDR peak voltage of the HPAs was then correlated with reduction potential determined by electrochemical method in solution. NDR peak voltage of the HPAs appeared at less negative voltage with increasing reduction potential. Vapor-phase oxidative dehydrogenation of isobutyraldehyde to methacrolein was also carried out as a model reaction to probe oxidation catalysis of the HPAs. NDR peak voltage of the HPAs appeared at less negative voltage with increasing yield for methacrolein. NDR peak voltage could be utilized as a correlating parameter for the reduction potential and as a probe of oxidation catalysis in the oxidative dehydrogenation of isobutyraldehyde.

14.
J Nanosci Nanotechnol ; 12(7): 6058-64, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22966708

RESUMO

Carbon aerogel (CA) was prepared by a sol-gel polymerization of resorcinol and formaldehyde, and a series of activated carbon aerogels (ACA-KOH-X, X = 0, 0.3, 0.7, 1, and 2) were then prepared by a chemical activation using different amount of potassium hydroxide (X represented weight ratio of KOH with respect to CA). Specific capacitances of activated carbon aerogels were measured by cyclic voltammetry and galvanostatic charge/discharge methods in 6 M KOH electrolyte. Among the samples prepared, ACA-KOH-0.7 showed the highest specific capacitance (149 F/g). In order to combine excellent electrochemical performance of activated carbon aerogel with pseudocapacitive property of manganese oxide, 7 wt% Mn was doped on activated carbon aerogel (Mn/ACA-KOH-0.7) by an incipient wetness impregnation method. For comparison, 7 wt% Mn was also impregnated on carbon aerogel (Mn/ACA-KOH-0) by the same method. It was revealed that 7 wt% Mn-doped activated carbon aerogel (Mn/ACA-KOH-0.7) showed higher specific capacitance than 7 wt% Mn-doped carbon aerogel (Mn/ACA-KOH-0) (178 F/g vs. 98 F/g). The enhanced capacitance of Mn/ACA-KOH-0.7 was attributed to the outstanding electric properties of activated carbon aerogel as well as the faradaic redox reactions of manganese oxide.

15.
J Nanosci Nanotechnol ; 12(7): 6045-50, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22966706

RESUMO

Vanadium-magnesium oxide catalysts supported on nano-structured MgO and ZrO2 (Mg3(VO4)2/MgO/ZrO2) were prepared by a wet impregnation method with a variation of Mg:Zr ratio (8:1, 4:1, 2:1, and 1:1). For comparison, Mg3(VO4)2/MgO and Mg3(VO4)2/ZrO2 catalysts were also prepared by a wet impregnation method. The prepared catalysts were applied to the oxidative dehydrogenation of n-butane in a continuous flow fixed-bed reactor. Mg3(VO4)2/MgO/ZrO2 (Mg:Zr = 4:1, 2:1, and 1:1) and Mg3(VO4)2/ZrO2 catalysts showed a stable catalytic activity during the whole reaction time, while Mg3(VO4)2/MgO/ZrO2 (8:1) and Mg3(VO4)2/MgO catalysts experienced a severe catalyst deactivation. Deactivation of Mg3(VO4)2/MgO/ZrO2 (8:1) and Mg3(VO4)2/MgO catalysts was due to their low oxygen mobility. Effect of oxygen capacity (the amount of oxygen in the catalyst involved in the reaction) of the supported Mg3(V04)2 catalysts on the catalytic performance in the oxidative dehydrogenation of n-butane was investigated. Experimental results revealed that oxygen capacity of the catalyst was closely related to the catalytic activity in the oxidative dehydrogenation of n-butane. A large oxygen capacity of the catalyst was favorable for obtaining a high catalytic activity in this reaction. Among the catalysts tested, Mg3(VO4)2/MgO/ZrO2 (4:1) catalyst with the largest oxygen capacity showed the best catalytic performance.

16.
J Nanosci Nanotechnol ; 12(7): 6051-7, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22966707

RESUMO

Mesoporous nickel-iron-alumina xerogel ((40-x)Ni(x)FeAX) nano-catalysts with different iron content (x = 0, 2.5, 5, 7.5, and 10) were prepared by a single-step sol-gel method for use in the methane production from carbon monoxide and hydrogen. The effect of iron content on the catalytic performance of (40-x)Ni(x)FeAX catalysts was investigated. In the methanation reaction, yield for CH4 decreased in the order of 35Ni5FeAX > 32.5Ni7.5FeAX > 30Ni10FeAX > 37.5Ni2.5FeAX > 40Ni0FeAX. This indicated that optimal iron content of mesoporous nickel-iron-alumina xerogel nano-catalyst was required for maximum production of CH4 in the methanation reaction. Experimental results revealed that optimal CO dissociation energy and large H2 adsorption ability of the catalyst were favorable for methane production. Among the catalysts tested, 35Ni5FeAX catalyst, which retained the most optimal CO dissociation energy and the largest H2 adsorption ability, exhibited the best catalytic performance in terms of conversion of CO and yield for CH4 in the methanation reaction. CO dissociation energy and H2 adsorption ability of the catalyst played a key role in determining the catalytic performance of (40-x)Ni(x)FeAX in the methanation reaction.

17.
J Nanosci Nanotechnol ; 11(7): 6533-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22121751

RESUMO

Scanning tunneling microscopy (STM) and tunneling spectroscopy studies of nano-structured H6P2MoxW(18-x)O62 (x = 0, 3, 9, 15, 18) Wells-Dawson heteropolyacids (HPAs) were carried out to examine redox properties of the HPAs. STM images of H6P2MoxW(18-x)O62 HPAs clearly showed self-assembled and well-ordered 2-dimensional arrays on graphite surface. Tunneling spectroscopy measurements revealed that all H6P2MoxW(18-x)O62 HPAs exhibited a negative differential resistance (NDR) behavior in their tunneling spectra. NDR peak voltage of H6P2MoxW(18-x)O62 HPAs appeared at less negative applied voltage with increasing molybdenum substitution. Reduction potential of H6P2MoxW(18-x)O62 HPAs measured by an electrochemical method increased and absorption edge energy determined by UV-visible spectroscopy shifted to lower value with increasing molybdenum substitution. In other words, NDR peak voltage of H6P2MoxW(18-x)O62 HPAs appeared at less negative applied voltage with increasing reduction potential and with decreasing absorption edge energy of the HPAs; more reducible H6P2MoxW(18-x)O62 HPAs showed NDR behavior at less negative applied voltage. These results indicate that NDR peak voltage of nano-structured HPAs measured by STM could be utilized as a correlating parameter for the redox properties of bulk HPAs.


Assuntos
Molibdênio/química , Nanoestruturas/química , Ácidos Fosfóricos/química , Ácido Fosfotúngstico/química , Ânions/química , Catálise , Microscopia de Tunelamento , Modelos Moleculares , Nanoestruturas/ultraestrutura , Oxirredução , Análise Espectral
18.
J Nanosci Nanotechnol ; 11(9): 7870-5, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22097499

RESUMO

Nanostructured H(3+x)PW(12-x)NbxO40 (x = 0, 1, 2, 3) Keggin heteropolyacid (HPA) catalysts were investigated by scanning tunneling microscopy (STM) and tunneling spectroscopy to probe their redox property and oxidation catalysis. STM image showed that the HPAs formed two-dimensional well-ordered monolayer arrays on graphite surface. In tunneling spectra of the HPAs deposited on graphite, they exhibited a distinctive current-voltage behavior referred to as negative differential resistance (NDR). NDR peak voltage measured atop HPA molecule was then correlated with reduction potential and absorption edge energy determined by electrochemical method and UV-visible spectroscopy, respectively. It was revealed that NDR peak voltage of the HPAs appeared at less negative voltage with increasing reduction potential and with decreasing absorption edge energy. In order to correlate NDR peak voltage of H(3+x)PW(12-x)NbxO40 Keggin HPAs with oxidation catalysis, oxidative dehydrogenation of isobutyraldehyde to methacrolein was carried out as a model reaction. NDR peak voltage of the HPAs appeared at less negative voltage with increasing yield for methacrolein.


Assuntos
Nanopartículas Metálicas , Ácidos/química , Catálise , Microscopia de Tunelamento , Estresse Oxidativo , Espectroscopia de Infravermelho com Transformada de Fourier
19.
J Nanosci Nanotechnol ; 11(7): 6528-32, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22121750

RESUMO

Carbon aerogel was prepared by polycondensation of resorcinol with formaldehyde using sodium carbonate as a catalyst in ambient conditions. Nano-sized Ni-doped carbon aerogel was then prepared by a precipitation method in an ethanol solvent. In order to elucidate the effect of nickel content on electrochemical properties, Ni-doped carbon aerogels (21, 35, 60, and 82 wt%) were prepared and their performance for supercapacitor electrode was investigated. Electrochemical properties of Ni-doped carbon aerogel electrodes were measured by cyclic voltammetry at a scan rate of 10 mV/sec and charge/discharge test at constant current of 1 A/g in 6 M KOH electrolyte. Among the samples prepared, 35 wt% Ni-doped carbon aerogel (Ni/CA-35) showed the highest capacitance (110 F/g) and excellent charge/discharge behavior. The enhanced capacitance of Ni-doped carbon aerogel was attributed to the faradaic redox reactions of nano-sized nickel oxide. Moreover, Ni-doped carbon aerogel exhibited quite stable cyclability, indicating long-term electrochemical stability.


Assuntos
Carbono/química , Nanopartículas/química , Nanotecnologia/métodos , Níquel/química , Capacitância Elétrica , Géis/química , Microscopia Eletrônica de Transmissão , Oxirredução , Porosidade , Resorcinóis/química , Difração de Raios X
20.
J Nanosci Nanotechnol ; 10(5): 3676-9, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20359026

RESUMO

Mesoporous cobalt oxide (Co3O4) films were deposited on ITO coated glass substrates by electrodeposition from an aqueous CoSO4 solution using CTAB (cetyltrimethylammonium bromide) as the templating agent. The structures of the synthesized films were characterized by X-ray diffraction, and X-ray photoelectron spectroscopy. The presence of mesoporosity was confirmed by transmission electron microscopy and small angle X-ray diffraction analyses. The mesoporous structures of the synthesized films were found to be strongly dependent on the deposition conditions, such as deposition voltage, deposition time, temperature and concentration of templating agent. Cyclic voltammetry and discharging curves were used to examine the electrochemical properties as a capacitor. The mesoporous films prepared with CTAB templating showed a much higher specific capacitance and current density than the nonporous electrode prepared without CTAB templating.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA