RESUMO
Nowadays, signal enhancement is imperative to increase sensitivity of advanced ECL devices for expediting their promising applications in clinic. In this work, photodynamic-assisted electrochemiluminescence (PDECL) device was constructed for precision diagnosis of Parkinson, where an advanced emitter was prepared by electrostatically linking 2,6-dimethyl-8-(3-carboxyphenyl)4,4'-difluoroboradiazene (BET) with 1-butyl-3-methylimidazole tetrafluoroborate ([BMIm][BF4]). Specifically, protoporphyrin IX (PPIX) can trigger the photodynamic reaction under light irradiation with a wavelength of 450 nm to generate lots of singlet oxygen (1O2), showing a 2.43-fold magnification in the ECL responses. Then, the aptamer (Apt) was assembled on the functional BET-[BMIm] for constructing a "signal off" ECL biosensor. Later on, the PPIX was embedded into the G-quadruplex (G4) of the Apt to magnify the ECL signals for bioanalysis of α-synuclein (α-syn) under light excitation. In the optimized surroundings, the resulting PDECL sensor has a broad linear range of 100.0 aM â¼ 10.0 fM and a low limit of detection (LOD) of 63 aM, coupled by differentiating Parkinson patients from normal individuals according to the receiver operating characteristic (ROC) curve analysis of actual blood samples. Such research holds great promise for synthesis of other advanced luminophores, combined with achieving an early clinical diagnosis.
Assuntos
Compostos de Boro , Técnicas Eletroquímicas , Medições Luminescentes , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/sangue , Compostos de Boro/química , Técnicas Biossensoriais/métodos , alfa-Sinucleína/análise , alfa-Sinucleína/sangue , Protoporfirinas/química , Aptâmeros de Nucleotídeos/química , Limite de DetecçãoRESUMO
BACKGROUND AND AIMS: Monocarboxylate transporter (MCT) 4 is a high-affinity lactate transporter that is primarily involved in the maintenance of intracellular pH homeostasis and highly expressed in different tumors. However, the role of MCT4 in modulating immune responses against HCC remains unknown. APPROACH AND RESULTS: In this study, we demonstrated that MCT4 was overexpressed in HCC, which was associated with poor prognosis in patients. Genetic or pharmacological inhibition of MCT4 using VB124 (a highly potent MCT4 inhibitor) suppressed HCC tumor growth in immunocompetent mice model by enhancing CD8 + T cell infiltration and cytotoxicity. Such improved immunotherapy response by MCT4 targeting was due to combined consequences characterized by the alleviated acidification of tumor microenvironment and elevated the chemokine (C-X-C motif) ligand (CXCL) 9/CXCL10 secretion induced by reactive oxygen species/NF-κB signaling pathway. Combining MCT4 inhibition improved the therapeutic benefit of anti-programmed cell death 1 immunotherapy in HCC and prolonged mice survival. Moreover, higher MCT4 expression was observed in tumor tissues from nonresponder patients with HCC receiving neoadjuvant therapy with toripalimab. CONCLUSIONS: Our results revealed that lactate exportation by MCT4 has a tumor-intrinsic function in generating an immunosuppressive HCC environment and demonstrated the proof of the concept of targeting MCT4 in tailoring HCC immunotherapeutic approaches.
Assuntos
Carcinoma Hepatocelular , Imunoterapia , Neoplasias Hepáticas , Transportadores de Ácidos Monocarboxílicos , Animais , Camundongos , Carcinoma Hepatocelular/terapia , Ácido Láctico/metabolismo , Neoplasias Hepáticas/terapia , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Microambiente Tumoral , HumanosRESUMO
An independent correlation between pre-RDW and 1-year mortality after surgery in elderly hip fracture can be used to predict mortality in elderly hip fracture patients and has predictive significance in anemia patients. With further research, a treatment algorithm can be developed to potentially identify patients at high risk of preoperative mortality. INTRODUCTION: Red blood cell distribution width (RDW) is an independent predictor of various disease states in elderly individuals, but its association with the prognosis of elderly hip fracture patients is controversial. This study aimed to evaluate the prognostic value of RDW in such patients, construct a prediction model containing RDW using random survival forest (RSF) and Cox regression analysis, and compare RDW in patients with and without anemia. METHODS: We retrospectively analyzed the data of elderly patients who underwent hip fracture surgery, selected the best variables using RSF, stratified the independent variables by Cox regression analysis, constructed a 1-year mortality prediction model of elderly hip fracture with RDW, and conducted internal validation and external validation. RESULTS: Two thousand one hundred six patients were included in this study. The RSF algorithm selects 12 important influencing factors, and Cox regression analysis showed that eight variables including preoperative RDW (pre-RDW) were independent risk factors for death within 1-year after hip fracture surgery in elderly patients. Stratified analysis showed that pre-RDW was still independently associated with 1-year mortality in the non-anemia group and not in the anemia group. The nomogram prediction model had high differentiation and fit, and the prediction model constructed by the total cohort of patients was also used for validation of patients in the anemia patients and obtained good clinical benefits. CONCLUSION: An independent correlation between pre-RDW and 1-year mortality after surgery in elderly hip fracture can be used to predict mortality in elderly hip fracture patients and has predictive significance in anemia patients.
Assuntos
Anemia , Fraturas do Quadril , Humanos , Idoso , Índices de Eritrócitos , Estudos Retrospectivos , Razão de Chances , Anemia/complicações , PrognósticoRESUMO
Nowadays, organic emitters suffer from insufficient electrochemiluminescence (ECL) efficiency in aqueous solutions, and their practical applications are severely restricted in the bio-sensing field. In this work, palladium nanospheres-embedded metal-organic frameworks (Pd@MOFs) were exploited to enhance the ECL efficiency of 2,6-dimethyl-8-(3-carboxyphenyl)4,4'-difluoroboradiazene (BET) prepared by a one-pot method in aqueous environment. First, the Pd@MOFs were generated via in situ reduction of Pd nanospheres anchored onto the MOFs, and fabricated by orderly coordination of palladium chloride (PdCl2) with 1,2,4,5-benzenetetramine (BTA) tetrahydrochloride. Then, the influence of protons on the ECL response of BET was studied in detail to obtain stronger ECL emission using potassium persulfate (K2S2O8) as co-reactant in aqueous environment. As a result, a 1.47-fold ECL efficiency enlargement of BET/K2S2O8 was harvested at the Pd@MOFs/GCE, where Ru(bpy)32+ behaved as a standard. Based on the fact that the ECL signals of the BET-covered Pd@MOFs modified glassy carbon electrode (simplified as BET/Pd@MOFs/GCE) can be quenched by Cu2+, the as-built ECL sensor showed a wide linear range (1.0-100.0 pM) and a limit of detection (LOD) as low as 0.12 pM. Hence, such research offers huge potential to promote the development of organic emitters in ECL biosensors and environmental monitoring.
RESUMO
Electrochemiluminescence (ECL) has attracted significant interest in the analysis of cancer cells, where the ruthenium(II)-based emitter demonstrates urgency and feasibility to improve the ECL efficiency. In this work, the self-enhanced ECL luminophore was prepared by covalent anchoring of Pd nanoclusters on aminated metal organic frameworks (Pd NCs@MOFs), followed by linkage with bis(2,2'-bipyridine)-5-amino-1,10-phenanthroline ruthenium(II) (RuP). The resultant luminophore showed 214-fold self-magnification in the ECL efficiency over RuP alone, combined by promoting the interfacial photoelectron transfer. The enhanced mechanism through ion annihilation was critically proved by controlled experiments and density functional theory (DFT) calculations. Based on the above, a "signal off" ECL biosensor was built by assembly of tyrosine kinase 7 (PTK-7) aptamer (Apt) on the established sensing platform for analysis of human lung cancer cells (A549). The built sensor showed a lower detection limit of 8 cells mL-1, achieving the single-cell detection. This work reported a self-enhanced strategy for synthesis of advanced ECL emitters, combined by exploring the ECL biosensing devices in the single-cell analysis of cancers.
Assuntos
Técnicas Biossensoriais , Neoplasias Pulmonares , Nanopartículas Metálicas , Estruturas Metalorgânicas , Rutênio , Humanos , Medições Luminescentes , Técnicas Eletroquímicas , Limite de DetecçãoRESUMO
OBJECTIVE: Dysfunction of endoplasmic reticulum (ER) proteins is closely related to homeostasis disturbance and malignant transformation of hepatocellular carcinoma (HCC). Reticulons (RTN) are a family of ER-resident proteins critical for maintaining ER function. Nevertheless, the precise roles of RTN in HCC remain largely unclear. The aim of the study is to examine the effect of reticulon family member RTN3 on HCC development and explore the underlying mechanisms. DESIGN: Clinical HCC samples were collected to assess the relationship between RTN3 expression and patients' outcome. HCC cell lines were employed to examine the effects of RTN3 on cellular proliferation, apoptosis and signal transduction in vitro. Nude mice model was used to detect the role of RTN3 in modulating tumour growth in vivo. RESULTS: We found that RTN3 was highly expressed in normal hepatocytes but frequently downregulated in HCC. Low RTN3 expression predicted poor outcome in patients with HCC in TP53 gene mutation and HBV infection status-dependent manner. RTN3 restrained HCC growth and induced apoptosis by activating p53. Mechanism studies indicated that RTN3 facilitated p53 Ser392 phosphorylation via Chk2 and enhanced subsequent p53 nuclear localisation. RTN3 interacted with Chk2, recruited it to ER and promoted its activation in an ER calcium-dependent manner. Nevertheless, the tumour suppressive effects of RTN3 were abrogated in HBV-positive cells. HBV surface antigen competed with Chk2 for RTN3 binding and blocked RTN3-mediated Chk2/p53 activation. CONCLUSION: The findings suggest that RTN3 functions as a novel suppressor of HCC by activating Chk2/p53 pathway and provide more clues to better understand the oncogenic effects of HBV.
Assuntos
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/virologia , Vírus da Hepatite B/patogenicidade , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose , Carcinogênese/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Quinase do Ponto de Checagem 2/metabolismo , Retículo Endoplasmático/metabolismo , Hepatócitos/metabolismo , Humanos , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas do Tecido Nervoso/metabolismo , Proteína Supressora de Tumor p53/genéticaRESUMO
Intrahepatic cholangiocarcinoma (ICC) remains a highly heterogeneous disease with poor prognosis. Tumor-infiltrating lymphocytes were predictive in various cancers, but their prognostic value in ICC is less clear. A total of 168 ICC patients who had received liver resection were enrolled and assigned to the derivation cohort. Sixteen immune markers in tumor and peritumor regions were examined by immunohistochemistry. A least absolute shrinkage and selection operator model was used to identify prognostic markers and to establish an immune signature for ICC (ISICC ). An ISICC -applied prediction model was built and validated in another independent dataset. Five immune features, including CD3peritumor (P) , CD57P , CD45RAP , CD66bintratumoral (T) and PD-L1P , were identified and integrated into an individualized ISICC for each patient. Seven prognostic predictors, including total bilirubin, tumor numbers, CEA, CA19-9, GGT, HBsAg and ISICC , were integrated into the final model. The C-index of the ISICC -applied prediction model was 0.719 (95% CI, 0.660-0.777) in the derivation cohort and 0.667 (95% CI, 0.581-0.732) in the validation cohort. Compared with the conventional staging systems, the new model presented better homogeneity and a lower Akaike information criteria value in ICC. The ISICC -applied prediction model may provide a better prediction performance for the overall survival of patients with resectable ICC in clinical practice.
Assuntos
Colangiocarcinoma/cirurgia , Neoplasias Hepáticas/cirurgia , Linfócitos do Interstício Tumoral/patologia , Prognóstico , Idoso , Colangiocarcinoma/epidemiologia , Colangiocarcinoma/patologia , Estudos de Coortes , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Hepatectomia , Humanos , Neoplasias Hepáticas/epidemiologia , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genéticaRESUMO
BACKGROUND: Immunoscore have shown a promising prognostic value in many cancers. We aimed to establish and validate an immune classifier to predict survival after curative resection of hepatocellular carcinoma (HCC) patients who have undergone curative resection. METHODS: The immunohistochemistry (IHC) classifier assay was performed on 664 patients with Barcelona Clinic Liver Cancer (BCLC) stage 0 or A HCC. A nine-feature-based HCC-IHC classifier was then constructed by the least absolute shrinkage and selection operator method. The associations between the HCC-IHC classifier and patient outcomes were assessed. Herein, a nomogram was generated from the Cox regression coefficients and evaluated by decision curve analysis. RESULTS: We constructed an HCC-IHC classifier based on nine features; significant differences were found between the low-HCC-IHC classifier patients and high-HCC-IHC classifier patients in the training cohort in the 5-year relapse-free survival rates (46.7% vs. 26.7%, respectively; P < 0.001). The HCC-IHC classifier-based nomogram presented better accuracy than traditional staging systems. CONCLUSIONS: In conclusion, the HCC-IHC classifier could effectively predict recurrence in early-stage HCC patients and supplemented the prognostic value of the BCLC staging system. The HCC-IHC classifier may facilitate patient decision-making and individualise the management of postoperative patients with early-stage HCC.
Assuntos
Carcinoma Hepatocelular/diagnóstico , Neoplasias Hepáticas/diagnóstico , Proteínas de Neoplasias/genética , Recidiva Local de Neoplasia/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/cirurgia , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Imuno-Histoquímica/métodos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/cirurgia , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/cirurgia , Prognóstico , Modelos de Riscos Proporcionais , Taxa de Sobrevida , Transcriptoma/genéticaRESUMO
BACKGROUND: The prognosis of patients with combined hepatocellular carcinoma and intrahepatic cholangiocarcinoma (CHC) is usually poor, and effective adjuvant therapy is missing making it important to investigate whether these patients may benefit from adjuvant transarterial chemoembolization (TACE). We aimed to evaluate the efficiency of adjuvant TACE for long-term recurrence and survival after curative resection before and after propensity score matching (PSM) analysis. METHODS: In this retrospective study, of 230 patients who underwent resection for CHC between January 1994 and December 2014, 46 (18.0%) patients received adjuvant TACE. Univariate and multivariate regression analyses were used to identify the independent predictive factors of survival. Cox regression analyses and log-rank tests were used to compare overall survival (OS) and disease-free survival (DFS) between patients who did or did not receive adjuvant TACE. RESULTS: A total of 230 patients (mean age 52.2 ± 11.9 years; 172 men) were enrolled, and 46 (mean age 52.7 ± 11.1 years; 38 men) patients received TACE. Before PSM, in multivariate regression analysis, γ-glutamyl transpeptidase (γ-GT), tumour nodularity, macrovascular invasion (MVI), lymphoid metastasis, and extrahepatic metastasis were associated with OS. Alanine aminotransferase (ALT), MVI, lymphoid metastasis, and preventive TACE (HR: 2.763, 95% CI: 1.769-4.314, p < 0.001) were independent prognostic factors for DFS. PSM created 46 pairs of patients. Before PSM, adjuvant preventive TACE was not associated with an increased risk of OS (HR: 0.911, 95% CI: 0.545-1.520, p = 0.720) or DFS (HR: 3.345, 95% CI: 1.686-6.638, p = 0.001). After PSM, the 5-year OS and DFS rates were comparable in the TACE group and the non-TACE group (OS: 22.7% vs 14.9%, respectively, p = 0.75; DFS: 11.2% vs 14.4%, respectively, p = 0.06). CONCLUSIONS: The present study identified that adjuvant preventive TACE did not influence DFS or OS after curative resection of CHC.
Assuntos
Neoplasias dos Ductos Biliares/mortalidade , Carcinoma Hepatocelular/mortalidade , Quimioembolização Terapêutica/mortalidade , Colangiocarcinoma/mortalidade , Hepatectomia/mortalidade , Neoplasias Hepáticas/mortalidade , Recidiva Local de Neoplasia/mortalidade , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/terapia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Quimioterapia Adjuvante , Colangiocarcinoma/patologia , Colangiocarcinoma/terapia , Terapia Combinada , Feminino , Seguimentos , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/terapia , Prognóstico , Estudos Retrospectivos , Taxa de SobrevidaRESUMO
Oncolytic virotherapy is a promising antitumor strategy which utilizes the lytic nature of viral replication to kill cancer cells. Oncolytic viruses (OVs) can induce cancer cell death and trigger immune responses to metastatic cancer in vivo. Reverse genetic systems have aided the insertion of anticancer genes into various OVs to augment their oncolytic capacity. Furthermore, OVs target and destroy the population of tumor-initiating cancer stem cells. These cancer stem cells are associated with metastasis and development of resistance to conventional anticancer approaches. Targeting cancer stem cells is essential since killing only differentiated tumor cells may lead to enrichment of cancer stem cells and thus indicate a poor prognosis. In this review, we summarize the oncolytic activity of various classes of OVs towards different types of cancer stem cells and also discuss the synergistic activity achieved by the combination of OVs with traditional therapies on chemo- and radiotherapy-resistant cancer stem cells.
Assuntos
Neoplasias , Células-Tronco Neoplásicas/imunologia , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Antineoplásicos , Linhagem Celular Tumoral , Humanos , Camundongos , Neoplasias/imunologia , Neoplasias/terapiaRESUMO
BACKGROUND & AIMS: Aberrant oncogenic mRNA translation and protein O-linked ß-N-acetylglucosaminylation (O-GlcNAcylation) are general features during tumorigenesis. Nevertheless, whether and how these two pathways are interlinked remain unknown. Our previous study indicated that ribosomal receptor for activated C-kinase 1 (RACK1) promoted chemoresistance and growth in hepatocellular carcinoma (HCC). The aim of this study is to examine the role of RACK1 O-GlcNAcylation in oncogene translation and HCC carcinogenesis. METHODS: The site(s) of RACK1 for O-GlcNAcylation was mapped by mass spectrometry analysis. HCC cell lines were employed to examine the effects of RACK1 O-GlcNAcylation on the translation of oncogenic factors and behaviors of tumor cells in vitro. Transgenic knock-in mice were used to detect the role of RACK1 O-GlcNAcylation in modulating HCC tumorigenesis in vivo. The correlation of RACK1 O-GlcNAcylation with tumor progression and relapse were analyzed in clinical HCC samples. RESULTS: We found that ribosomal RACK1 was highly modified by O-GlcNAc at Ser122. O-GlcNAcylation of RACK1 enhanced its protein stability, ribosome binding and interaction with PKCßII (PRKCB), leading to increased eukaryotic translation initiation factor 4E phosphorylation and translation of potent oncogenes in HCC cells. Genetic ablation of RACK1 O-GlcNAcylation at Ser122 dramatically suppressed tumorigenesis, angiogenesis, and metastasis in vitro and in diethylnitrosamine (DEN)-induced HCC mouse model. Increased RACK1 O-GlcNAcylation was also observed in HCC patient samples and correlated with tumor development and recurrence after chemotherapy. CONCLUSIONS: These findings demonstrate that RACK1 acts as key mediator linking O-GlcNAc metabolism to cap-dependent translation during HCC tumorigenesis. Targeting RACK1 O-GlcNAcylation provides promising options for HCC treatment. LAY SUMMARY: O-GlcNAcylation of ribosomal receptor for activated C-kinase 1 at the amino acid serine122 promotes its stability, ribosome localization and interaction with the protein kinase, PKCßII, thus driving the translation of oncogenes and tumorigenesis of hepatocellular carcinoma. Increased O-GlcNAcylation of ribosomal receptor for activated C-kinase 1 is positively correlated with tumor growth, metastasis and recurrence in patients with hepatocellular carcinoma.
Assuntos
Carcinoma Hepatocelular/etiologia , Neoplasias Hepáticas/etiologia , Proteínas de Neoplasias/metabolismo , Receptores de Quinase C Ativada/metabolismo , Substituição de Aminoácidos , Animais , Carcinógenos/química , Carcinógenos/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Glicosilação , Humanos , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Nus , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Proteína Quinase C beta/metabolismo , Estabilidade Proteica , Receptores de Quinase C Ativada/química , Receptores de Quinase C Ativada/genética , Serina/químicaRESUMO
Calpain-4 belongs to the calpain family of calcium-dependent cysteine proteases, and functions as a small regulatory subunit of the calpains. Recent evidence indicates that calpain-4 plays critical roles in tumor migration and invasion. However, the roles of calpain-4 in gastric tumorigenesis remain poorly understood. Herein, we examined calpain-4 expression by immunohistochemical staining on tissue microarrays containing tumor samples of 174 gastric cancer patients between 2004 and 2008 at a single center. The Kaplan-Meier method was used to compare survival curves, and expression levels were correlated to clinicopathological factors and overall survival. Our data demonstrated that calpain-4 was generally increased in gastric cancer cell lines and primary tumor tissues. High expression of calpain-4 was positively associated with vessel invasion, lymph node metastasis, and advanced TNM (Tumor Node Metastasis) stage. Multivariate analysis identified calpain-4 as an independent prognostic factor for poor prognosis. A predictive nomogram integrating calpain-4 expression with other independent prognosticators was constructed, which generated a better prognostic value for overall survival of gastric cancer patients than a TNM staging system. In conclusion, calpain-4 could be regarded as a potential prognosis indicator for clinical outcomes in gastric cancer.
RESUMO
Hepatocellular carcinoma (HCC) remains the second leading cause of cancer-related death worldwide, and elevated rates of reactive oxygen species (ROS) have long been considered as a hallmark of almost all types of cancer including HCC. Protein kinase C alpha (PKCα), a serine/threonine kinase among conventional PKC family, is recognized as a major player in signal transduction and tumor progression. Overexpression of PKCα is commonly observed in human HCC and associated with its poor prognosis. However, how PKCα is involved in hepatocellular carcinogenesis remains not fully understood. In this study, we found that among the members of conventional PKC family, PKCα, but not PKCßI or ßII, promoted ROS production in HCC cells. PKCα stimulated generation of ROS by up-regulating DUOX2 at post-transcriptional level. Depletion of DUOX2 abrogated PKCα-induced activation of AKT/MAPK pathways as well as cell proliferation, migration and invasion in HCC cells. Moreover, the expression of DUOX2 and PKCα was well positively correlated in both HCC cell lines and patient samples. Collectively, our findings demonstrate that PKCα plays a critical role in HCC development by inducing DUOX2 expression and ROS generation, and propose a strategy to target PKCα/DUOX2 as a potential adjuvant therapy for HCC treatment.
Assuntos
Carcinoma Hepatocelular/enzimologia , Neoplasias Hepáticas/enzimologia , NADPH Oxidases/metabolismo , Proteína Quinase C-alfa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sequência de Bases , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Oxidases Duais , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Proteína Quinase C-alfa/genética , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo RealRESUMO
BACKGROUND: General anesthesia is commonly used in the surgical management of gastrointestinal tumors; however, it can lead to emergence agitation (EA). EA is a common complication associated with general anesthesia, often characterized by behaviors, such as crying, struggling, and involuntary limb movements in patients. If treatment is delayed, there is a risk of incision cracking and bleeding, which can significantly affect surgical outcomes. Therefore, having a proper understanding of the factors influencing the occurrence of EA and implementing early preventive measures may reduce the incidence of agitation during the recovery phase from general anesthesia, which is beneficial for improving patient prognosis. AIM: To analyze influencing factors and develop a risk prediction model for EA occurrence following general anesthesia for primary liver cancer. METHODS: Retrospective analysis of clinical data from 200 patients who underwent hepatoma resection under general anesthesia at Wenzhou Central Hospital (January 2020 to December 2023) was conducted. Post-surgery, the Richmond Agitation-Sedation Scale was used to evaluate EA presence, noting EA incidence after general anesthesia. Patients were categorized by EA presence postoperatively, and the influencing factors were analyzed using logistic regression. A nomogram-based risk prediction model was constructed and evaluated for differentiation and fit using receiver operating characteristics and calibration curves. RESULTS: EA occurred in 51 (25.5%) patients. Multivariate analysis identified advanced age, American Society of Anesthesiologists (ASA) grade III, indwelling catheter use, and postoperative pain as risk factors for EA (P < 0.05). Conversely, postoperative analgesia was a protective factor against EA (P < 0.05). The area under the curve of the nomogram was 0.972 [95% confidence interval (CI): 0.947-0.997] for the training set and 0.979 (95%CI: 0.951-1.000) for the test set. Hosmer-Lemeshow test showed a good fit (χ 2 = 5.483, P = 0.705), and calibration curves showed agreement between predicted and actual EA incidence. CONCLUSION: Age, ASA grade, catheter use, postoperative pain, and analgesia significantly influence EA occurrence. A nomogram constructed using these factors demonstrates strong predictive accuracy.
RESUMO
BACKGROUND: Metabolic reprogramming is closely related to the development of gastric cancer (GC), which remains as the fourth leading cause of cancer-related death worldwide. As a tumor suppressor for GC, whether receptor for activated C-kinase 1 (RACK1) play a modulatory role in metabolic reprogramming remains largely unclear. METHODS: GC cell lines and cell-derived xenograft mouse model were used to identify the biological function of RACK1. Flow cytometry and Seahorse assays were applied to examine cell cycle and oxygen consumption rate (OCR), respectively. Western blot, real-time PCR and autophagy double fluorescent assays were utilized to explore the signaling. Immunohistochemistry was performed to detect the expression of RACK1 and other indicators in tissue sections. RESULTS: Loss of RACK1 facilitated the viability, colony formation, cell cycle progression and OCR of GC cells in a glutamine-dependent manner. Further investigation revealed that RACK1 knockdown inhibited the lysosomal degradation of Alanine-serine-cysteine amino acid transporter 2 (ASCT2). Mechanistically, depletion of RACK1 remarkably decreased PTEN expression through up-regulating miR-146b-5p, leading to the activation of AKT/mTOR signaling pathway which dampened autophagy flux subsequently. Moreover, knockdown of ASCT2 could reverse the promotive effect of RACK1 depletion on GC tumor growth both in vitro and in vivo. Tissue microarray confirmed that RACK1 was negatively correlated with the expression of ASCT2 and p62, as well as the phosphorylation of mTOR. CONCLUSION: Together, our results demonstrate that the suppressive function of RACK1 in GC is associated with ASCT2-mediated glutamine metabolism, and imply that targeting RACK1/ASCT2 axis provides potential strategies for GC treatment.
Assuntos
Neoplasias Gástricas , Humanos , Animais , Camundongos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glutamina/metabolismo , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Receptores de Quinase C Ativada/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismoRESUMO
PURPOSE: GPX8, which is found in the endoplasmic reticulum lumen, is a member of the Glutathione Peroxidases (GPXs) family. Its role in hepatocellular carcinoma (HCC) is unknown. METHODS: Immunohistochemical staining was used to detect the protein levels of GPX8 in HCC tissue microarrays. A short hairpin RNA lentivirus was used to knock down GPX8, and the main signaling pathways were investigated using transcriptome sequencing and a phosphorylated kinase array. The sphere formation assays, cloning-formation assays and cell migration assays were used to evaluate the stemness and migration ability of HCC cells. Identifying the GPX8-interacting proteins was accomplished through immunoprecipitation and protein mass spectrometry. RESULTS: The GPX8 protein levels were downregulated in HCC patients. Low expression of GPX8 protein was related to early recurrence and poor prognosis in HCC patients. GPX8 knockdown could enhance the stemness and migration ability of HCC cells. Consistently, Based on transcriptome analysis, multiple signaling pathways that include the PI3K-AKT and signaling pathways that regulate the pluripotency of stem cells, were activated after GPX8 knockdown. The downregulation of GPX8 could increase the expression of the tumor stemness markers KLF4, OCT4, and CD133. The in vivo downregulation of GPX8 could also promote the subcutaneous tumor-forming and migration ability of HCC cells. MK-2206, which is a small-molecule inhibitor of AKT, could reverse the tumor-promoting effects both in vivo and in vitro. We discovered that GPX8 and the 71-kDa heat shock cognate protein (Hsc70) have a direct interaction. The phosphorylation of AKT encouraged the translocation of Hsc70 into the nucleus and the expression of the PI3K p110 subunit, thereby increasing the downregulation of GPX8. CONCLUSION: The findings from this study demonstrate the anticancer activity of GPX8 in HCC by inactivating the Hsc70/AKT pathway. The results suggest a possible therapeutic target for HCC.
Assuntos
Carcinoma Hepatocelular , Movimento Celular , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Células-Tronco Neoplásicas , Transdução de Sinais , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação para Baixo/genética , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/genética , Fator 4 Semelhante a Kruppel , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genéticaRESUMO
Our previous study indicated that Reticulon 2 (RTN2) was upregulated and facilitated the progression of gastric cancer. Protein O-linked ß-N-acetylglucosaminylation (O-GlcNAcylation) is a general feature during tumorigenesis, and regulates protein activity and stability through post-translational modification on serine/threonine. However, the relationship between RTN2 and O-GlcNAcylation have never been determined. In this study, we explored the influence of O-GlcNAcylation on RTN2 expression and its promotive role in gastric cancer. We found that RTN2 interacted with O-GlcNAc transferase (OGT) and was modified by O-GlcNAc. O-GlcNAcylation enhanced RTN2 protein stability via attenuating its lysosomal degradation in gastric cancer cells. Furthermore, our results demonstrated that RTN2-induced activation of ERK signalling was dependent on O-GlcNAcylation. Consistently, the stimulative effects of RTN2 on cellular proliferation and migration were abrogated by OGT inhibition. Tissue microarray with immumohistochemical staining also confirmed that the expression of RTN2 was positively correlated with the level of total O-GlcNAcylation as well as the phosphorylation level of ERK. Besides, combined RTN2 and O-GlcNAc staining intensity could improve predictive accuracy for gastric cancer patients' survival compared with each alone. Altogether, these findings suggest that O-GlcNAcylation on RTN2 was pivotal for its oncogenic functions in gastric cancer. Targeting RTN2 O-GlcNAcylation might provide new ideas for gastric cancer therapies.
Assuntos
Proteínas de Membrana , Neoplasias Gástricas , Humanos , Acetilglucosamina/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Transdução de Sinais , Proteínas de Membrana/metabolismoRESUMO
Hepatocellular carcinoma (HCC) is an immunotherapy-resistant malignancy characterized by high cellular heterogeneity. The diversity of cell types and the interplay between tumor and non-tumor cells remain to be clarified. Single cell RNA sequencing of human and mouse HCC tumors revealed heterogeneity of cancer-associated fibroblast (CAF). Cross-species analysis determined the prominent CD36+ CAFs exhibited high-level lipid metabolism and expression of macrophage migration inhibitory factor (MIF). Lineage-tracing assays showed CD36+CAFs were derived from hepatic stellate cells. Furthermore, CD36 mediated oxidized LDL uptake-dependent MIF expression via lipid peroxidation/p38/CEBPs axis in CD36+ CAFs, which recruited CD33+myeloid-derived suppressor cells (MDSCs) in MIF- and CD74-dependent manner. Co-implantation of CD36+ CAFs with HCC cells promotes HCC progression in vivo. Finally, CD36 inhibitor synergizes with anti-PD-1 immunotherapy by restoring antitumor T-cell responses in HCC. Our work underscores the importance of elucidating the function of specific CAF subset in understanding the interplay between the tumor microenvironment and immune system.
RESUMO
Cuproptosis is a newly defined programmed cell death pattern and is believed to play an important role in tumorigenesis and progression. In addition, many studies have shown that glycosylation modification is of vital importance in tumor progression. However, it remains unclear whether glycosyltransferases, the most critical enzymes involved in glycosylation modification, are associated with cuproptosis. In this study, we used bioinformatic methods to construct a signature of cuproptosis-related glycosyltransferases to predict the prognosis of colon adenocarcinoma patients. We found that cuproptosis was highly correlated with four glycosyltransferases in COAD, and our model predicted the prognosis of COAD patients. Further analysis of related functions revealed the possibility that cuproptosis-related glycosyltransferase Exostosin-like 2 (EXTL2) participated in tumor immunity.
Assuntos
Adenocarcinoma , Apoptose , Neoplasias do Colo , Glicosiltransferases , Humanos , Glicosilação , PrognósticoRESUMO
Endoscopic surgery is increasingly utilized for the treatment of early gastric cancer (EGC) worldwide, whereas lymph node metastasis (LNM) remains a critical risk factor for the relapse of EGC after endoscopic surgery. Therefore, identifying potential predictive factors and understanding the molecular mechanisms are urgently needed for improving the outcome of EGC patients with LNM. UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) is the key enzyme in the process of biosynthesis of CMP-Neu5Ac from UDP-N-acetylglucosamine (UDP-GlcNAc), which acts as a substrate for several reactions in glycan metabolism. In this study, we found that GNE was down-regulated in EGC patients with LNM. GNE expression as well as localization, tumor size, intravascular tumor thrombi and Lauren's classification were further identified as independent predictive factors for LNM. Combining GNE expression with traditional risk factors, including tumor size and differentiation degrees, could generate a better model for predicting LNM in EGC patients. Overall, our study implies that low GNE expression is a potential predictor of LNM in EGC.