Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
BMC Musculoskelet Disord ; 25(1): 531, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38987691

RESUMO

BACKGROUND: The treatment of the displaced proximal humerus fractures (PHF) still facing a lot of unsolved problems. The aim of this study was to evaluate the clinical effect of MultiLoc nails for the treatment of PHF and present outcomes of patients with different Neer's classification and reduction quality. METHODS: Adult patients with PHFs were recruited and treated with MultiLoc nail. Intraoperative data, radiographic and functional outcomes, as well as occurrence of postoperative complications were assessed. RESULTS: 48 patients met inclusion and exclusion criteria and were included in this study. The DASH Score were 32.2 ± 3.1 points at 12 months, and 37.3 ± 2.5 points at the final follow-up. The mean ASES score at 12 months and final follow-up were 74.4 ± 6.2 and 78.8 ± 5.1, respectively. The mean CM Score in all 48 patients reached 68 ± 6.4 points at the final follow-up, relative side related CM Score 75.2 ± 7.7% of contralateral extremity. The incidence rate of complications was 20.8%. Patients with fracture mal-union, adhesive capsulitis were observed but no secondary surgeries were performed. There was no significantly difference of DASH Score 12 months after surgery and at the last follow-up among patients with different Neer's classification or reduction quality. However, functional outcomes such as ASES score and CM score were significantly influenced by severity of fracture and the quality of fracture reduction. CONCLUSIONS: Our study demonstrated that MultiLoc nails is well suited for proximal humeral fractures, with satisfactory health status recovery, good radiographic results, positive clinical outcomes and low rates of complications. The treatment for four part PHF still faces great challenges. Accurate fracture reduction was an important factor for good functional result.


Assuntos
Pinos Ortopédicos , Fixação Intramedular de Fraturas , Complicações Pós-Operatórias , Fraturas do Ombro , Humanos , Fraturas do Ombro/cirurgia , Fraturas do Ombro/diagnóstico por imagem , Masculino , Feminino , Pessoa de Meia-Idade , Fixação Intramedular de Fraturas/métodos , Fixação Intramedular de Fraturas/instrumentação , Fixação Intramedular de Fraturas/efeitos adversos , Idoso , Resultado do Tratamento , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/epidemiologia , Adulto , Nível de Saúde , Seguimentos , Radiografia , Estudos Retrospectivos
2.
Mol Cell Biochem ; 478(2): 329-341, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35913538

RESUMO

PURPOSE: The present work focused on exploring the role of circRNA3616 in neuronal inflammation and apoptosis in spinal cord injury (SCI). METHODS: The SCI mouse model and circRNA3616 knockdown SCI mouse model were established. This work focused on assessing the mouse locomotor function using Basso Mouse Scale (BMS) and BMS subscore. Hematoxylin-eosin (HE) staining and Tunel staining were conducted, while myeloperoxidase (MPO) activity was also detected on spinal cord tissues. We also knocked down circRNA3616 expression in NSC-34 cells. Meanwhile, the SCI cell model was established by oxygen glucose deprivation (OGD) in NSC-34 cells. Moreover, we conducted dual-luciferase reporter gene assay. Flow cytometry (FCM) was conducted to detect SCI cell apoptosis, whereas cell counting kit-8 (CCK-8) assay was performed to analyze cell viability. This study also implemented enzyme-linked immunosorbent assay to detect inflammatory factors in spinal cord tissues, serum, and cells. RESULTS: CircRNA3616 knockdown reduced the damage, inflammatory response, apoptosis, and MPO activity in SCI mouse serum and spinal cord tissues. CircRNA3616 knockdown increased BMS and BMS subscore of SCI mice. CircRNA3616 up-regulated TLR4 expression by sponging miR-137. CircRNA3616 knockdown inhibited the TLR4, p-IkBα, p-p65/p65 protein expression, while promoting IkBα protein expression within SCI mouse spinal cord. TLR4 reversed circRNA3616 knockdown-induced inhibition on NF-κB pathway activity in SCI cells. CircRNA3616 knockdown attenuated neuronal cell inflammation and apoptosis via TLR4/NF-κB pathway after SCI. CONCLUSION: CircRNA3616 silencing attenuates inflammation and apoptosis in SCI by inhibiting TLR4/NF-κB activity via sponging miR-137. CircRNA3616 is the possible anti-SCI therapeutic target.


Assuntos
MicroRNAs , Traumatismos da Medula Espinal , Camundongos , Animais , NF-kappa B/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo , Inflamação/genética , Inflamação/tratamento farmacológico , Apoptose/genética , Medula Espinal , MicroRNAs/genética , MicroRNAs/metabolismo
3.
Cell Mol Biol Lett ; 28(1): 5, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658478

RESUMO

BACKGROUND: Secondary spinal cord injury (SCI) often causes the aggravation of inflammatory reaction and nerve injury, which affects the recovery of motor function. Bone-marrow-derived macrophages (BMDMs) were recruited to the injured area after SCI, and the M1 polarization is the key process for inducing inflammatory response and neuronal apoptosis. We previously showed that photobiomodulation (PBM) can inhibit the polarization of M1 phenotype of BMDMs and reduce inflammation, but the underlying mechanisms are unclear. The purpose of this study is to explore the potential target and mechanism of PBM in treating SCI. METHODS: Transcriptome sequencing and bioinformatics analysis showed that long noncoding RNA taurine upregulated gene 1 (lncRNA TUG1) was a potential target of PBM. The expression and specific mechanism of lncRNA TUG1 were detected by qPCR, immunofluorescence, flow cytometry, western blotting, fluorescence in situ hybridization, and luciferase assay. The Basso mouse scale (BMS) and gait analysis were used to evaluate the recovery of motor function in mice. RESULTS: Results showed that lncRNA TUG1 may be a potential target of PBM, regulating the polarization of BMDMs, inflammatory response, and the axial growth of DRG. Mechanistically, TUG1 competed with TLR3 for binding to miR-1192 and attenuated the inhibitory effect of miR-1192 on TLR3. This effect protected TLR3 from degradation, enabling the high expression of TLR3, which promoted the activation of downstream NF-κB signal and the release of inflammatory cytokines. In vivo, PBM treatment could reduce the expression of TUG1, TLR3, and inflammatory cytokines and promoted nerve survival and motor function recovery in SCI mice. CONCLUSIONS: Our study clarified that the lncRNA TUG1/miR-1192/TLR3 axis is an important pathway for PBM to inhibit M1 macrophage polarization and inflammation, which provides theoretical support for its clinical application in patients with SCI.


Assuntos
MicroRNAs , RNA Longo não Codificante , Traumatismos da Medula Espinal , Receptor 3 Toll-Like , Animais , Camundongos , Citocinas/genética , Hibridização in Situ Fluorescente , Inflamação/genética , Inflamação/metabolismo , Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Traumatismos da Medula Espinal/genética , Receptor 3 Toll-Like/genética
4.
Exp Cell Res ; 398(2): 112418, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33309808

RESUMO

BACKGROUND: NIMA-related kinase-7 (NEK7) is a serine/threonine kinase that drives cell-cycle dynamics by modulating mitotic spindle formation and cytokinesis. It is also a crucial modulator of the pro-inflammatory effects of NOD-like receptor 3 (NLRP3) inflammasome. However, the role of NEK7 in microglia/macrophages post-spinal cord injury (SCI) is not well defined. METHODS: In this study, we performed both in vivo and in vitro experiments. Using an in vivo mouse SCI model, NEK7 siRNAs were administered intraspinally. For in vitro analysis, BV-2 microglia cells with NEK7-siRNA were stimulated with 1 µg/ml lipopolysaccharide (LPS) and 2 mM Adenosine triphosphate (ATP). RESULTS: Here, we found that the mRNA and protein levels of NEK7 and NLRP3 inflammasomes were upregulated in spinal cord tissues of injured mice and BV-2 microglia cells exposed to Lipopolysaccharide (LPS) and Adenosine triphosphate (ATP). Further experiments established that NEK7 and NLRP3 interacted in BV-2 microglia cells, an effect that was eliminated following NEK7 ablation. Moreover, NEK7 ablation suppressed the activation of NLRP3 inflammasomes. Although NEK7 inhibition did not significantly improve motor function post-SCI in mice, it was found to attenuate local inflammatory response and inhibit the activation of NLRP3 inflammasome in microglia/macrophages of the injured spinal cord. CONCLUSION: NEK7 amplifies NLRP3 inflammasome pro-inflammatory signaling in BV-2 microglia cells and mice models of SCI. Therefore, agents targeting the NEK7/NLRP3 signaling offers great promise in the treatment of inflammatory response post-SCI.


Assuntos
Inflamassomos/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Quinases Relacionadas a NIMA/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Traumatismos da Medula Espinal/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Traumatismos da Medula Espinal/cirurgia
5.
J Neuroinflammation ; 18(1): 256, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740378

RESUMO

BACKGROUND: Neurotoxic microglia and astrocytes begin to activate and participate in pathological processes after spinal cord injury (SCI), subsequently causing severe secondary damage and affecting tissue repair. We have previously reported that photobiomodulation (PBM) can promote functional recovery by reducing neuroinflammation after SCI, but little is known about the underlying mechanism. Therefore, we aimed to investigate whether PBM ameliorates neuroinflammation by modulating the activation of microglia and astrocytes after SCI. METHODS: Male Sprague-Dawley rats were randomly divided into three groups: a sham control group, an SCI + vehicle group and an SCI + PBM group. PBM was performed for two consecutive weeks after clip-compression SCI models were established. The activation of neurotoxic microglia and astrocytes, the level of tissue apoptosis, the number of motor neurons and the recovery of motor function were evaluated at different days post-injury (1, 3, 7, 14, and 28 days post-injury, dpi). Lipocalin 2 (Lcn2) and Janus kinase-2 (JAK2)-signal transducer and activator of transcription-3 (STAT3) signaling were regarded as potential targets by which PBM affected neurotoxic microglia and astrocytes. In in vitro experiments, primary microglia and astrocytes were irradiated with PBM and cotreated with cucurbitacin I (a JAK2-STAT3 pathway inhibitor), an adenovirus (shRNA-Lcn2) and recombinant Lcn2 protein. RESULTS: PBM promoted the recovery of motor function, inhibited the activation of neurotoxic microglia and astrocytes, alleviated neuroinflammation and tissue apoptosis, and increased the number of neurons retained after SCI. The upregulation of Lcn2 and the activation of the JAK2-STAT3 pathway after SCI were suppressed by PBM. In vitro experiments also showed that Lcn2 and JAK2-STAT3 were mutually promoted and that PBM interfered with this interaction, inhibiting the activation of microglia and astrocytes. CONCLUSION: Lcn2/JAK2-STAT3 crosstalk is involved in the activation of neurotoxic microglia and astrocytes after SCI, and this process can be suppressed by PBM.


Assuntos
Astrócitos/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Microglia/efeitos da radiação , Recuperação de Função Fisiológica/efeitos da radiação , Traumatismos da Medula Espinal/patologia , Animais , Astrócitos/metabolismo , Janus Quinase 2/metabolismo , Janus Quinase 2/efeitos da radiação , Lipocalina-2/metabolismo , Lipocalina-2/efeitos da radiação , Masculino , Microglia/metabolismo , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Traumatismos da Medula Espinal/metabolismo , Regulação para Cima
6.
Exp Cell Res ; 363(2): 179-187, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29305963

RESUMO

The failure of neuronal proliferation and differentiation is a major obstacle for neural repair and regeneration after traumatic central nervous system (CNS) injury. PTEN acts as an intrinsic brake on the neuronal cells, but its roles and mechanism still remain to be clarified. Herein, for the first time we confirmed that PTEN had a dual effect on the neuronal cells in vitro. Firstly, we found that PTEN knockdown significantly promoted cell proliferation and differentiation. Then, PTEN knockdown activated PI3K/Akt and Wnt/ß-catenin pathways in vitro. Further evidence revealed that GSK3ß as a key node involved in PTEN controlling cell proliferation and differentiation in PC12 cells. In addition, we identified that PTEN-GSK3ß pathway modulated neuronal proliferation via ß-catenin. Taken together, these results suggest that PTEN silencing enhances neuronal proliferation and differentiation by activating PI3K/Akt/GSK3ß pathway that it may be a promising therapeutic approach for CNS injury.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Glicogênio Sintase Quinase 3 beta/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Animais , Inativação Gênica/fisiologia , Neurônios/metabolismo , Células PC12 , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
7.
Cell Mol Life Sci ; 75(23): 4445-4464, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30069702

RESUMO

Mps One binder 1 (MOB1) is a core component of NDR/LATS kinase and a positive regulator of the Hippo signaling pathway. However, its role in neurite outgrowth still remains to be clarified. Here, we confirmed, for the first time, that MOB1 promoted neurite outgrowth and was involved in functional recovery after spinal cord injury (SCI) in mice. Mechanistically, we found that MOB1 stability was regulated by the PTEN-GSK3ß axis. The MOB1 protein was significantly up-regulated in PTEN-knockdown neuronal cells. This effect was dependent on the lipid phosphatase activity of PTEN. Moreover, MOB1 was found to be a novel substrate for GSK3ß that is phosphorylated on serine 146 and degraded via the ubiquitin-proteasome system (UPS). Finally, in vivo lentiviral-mediated silencing of PTEN promoted neurite outgrowth and functional recovery after SCI and this effect was reversed by down-regulation of MOB1. Taken together, this study provided mechanistic insight into how MOB1 acts as a novel and a necessary regulator in PTEN-GSK3ß axis that controls neurite outgrowth after SCI.


Assuntos
Glicogênio Sintase Quinase 3 beta/genética , Crescimento Neuronal/genética , PTEN Fosfo-Hidrolase/genética , Fosfoproteínas/genética , Animais , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Células NIH 3T3 , Células PC12 , PTEN Fosfo-Hidrolase/metabolismo , Fosfoproteínas/metabolismo , Interferência de RNA , Ratos , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/fisiopatologia
8.
Archaea ; 2018: 9319345, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30410420

RESUMO

Microorganisms play important roles in the reduction of organic and inorganic pollutants in constructed wetlands used for the treatment of wastewater. However, the diversity and structure of microbial community in constructed wetland system remain poorly known. In this study, the Illumina MiSeq Sequencing of 16S rDNA was used to analyze the bacterial and archaeal microbial community structures of soil and water in a free surface flow constructed wetland, and the differences of bacterial communities and archaeal compositions between soil and water were compared. The results showed that the Proteobacteria were the dominant bacteria, making up 35.38%~48.66% relative abundance. Euryarchaeotic were the absolute dominant archaea in the influent sample with the relative abundance of 93.29%, while Thaumarchaeota showed dominance in the other three samples, making up 50.58%~75.70%. The relative abundances of different species showed great changes in bacteria and archaea, and the number of dominant species in bacteria was much higher than that in archaea. Compared to archaea, the community compositions of bacteria were more abundant and the changes were more significant. Meanwhile, bacteria and archaea had large differences in compositions between water and soil. The microbial richness in water was significantly higher than that in soil. Simultaneously, soil had a significant enrichment effect on some microbial flora.


Assuntos
Archaea/classificação , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/isolamento & purificação , Águas Residuárias/microbiologia , Purificação da Água/métodos , Áreas Alagadas , Archaea/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Biota , Análise por Conglomerados , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Filogenia , Dinâmica Populacional , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
9.
Water Sci Technol ; 76(1-2): 201-209, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28708625

RESUMO

Prediction of the pollutant mixing zone (PMZ) near the discharge outfall in Huangshaxi shows large error when using the methods based on the constant lateral diffusion assumption. The discrepancy is due to the lack of consideration of the diffusion coefficient variation. The variable lateral diffusion coefficient is proposed to be a function of the longitudinal distance from the outfall. Analytical solution of the two-dimensional advection-diffusion equation of a pollutant is derived and discussed. Formulas to characterize the geometry of the PMZ are derived based on this solution, and a standard curve describing the boundary of the PMZ is obtained by proper choices of the normalization scales. The change of PMZ topology due to the variable diffusion coefficient is then discussed using these formulas. The criterion of assuming the lateral diffusion coefficient to be constant without large error in PMZ geometry is found. It is also demonstrated how to use these analytical formulas in the inverse problems including estimating the lateral diffusion coefficient in rivers by convenient measurements, and determining the maximum allowable discharge load based on the limitations of the geometrical scales of the PMZ. Finally, applications of the obtained formulas to onsite PMZ measurements in Huangshaxi present excellent agreement.


Assuntos
Poluentes Químicos da Água/química , China , Difusão , Cinética , Esgotos/química
10.
Mol Neurobiol ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581538

RESUMO

Spinal cord injury (SCI) constitutes a significant clinical challenge, and there is extensive research focused on identifying molecular activities that can facilitate the repair of spinal cord injuries. Mammalian sterile 20-like kinase 2 (MST2), a core component of the Hippo signaling pathway, plays a key role in apoptosis and cell growth. However, its role in neurite outgrowth after spinal cord injury remains unknown. Through comprehensive in vitro and in vivo experiments, we demonstrated that MST2, predominantly expressed in neurons, actively participated in the natural development of the CNS. Post-SCI, MST2 expression significantly increased, indicating its activation and potential role in the early stages of neural recovery. Detailed analyses showed that MST2 knockdown impaired neurite outgrowth and motor function recovery, whereas MST2 overexpression led to the opposite effects, underscoring MST2's neuroprotective role in enhancing neural repair. Further, we elucidated the mechanism underlying MST2's action, revealing its interaction with AKT and positive regulation of AKT activity, a well-established promoter of neurite outgrowth. Notably, MST2's promotion of neurite outgrowth and motor functional recovery was diminished by AKT inhibitors, highlighting the dependency of MST2's neuroprotective effects on AKT signaling. In conclusion, our findings affirmed MST2's pivotal role in fostering neuronal neurite outgrowth and facilitating functional recovery after SCI, mediated through its positive modulation of AKT activity. In conclusion, our findings confirmed MST2's crucial role in neural protection, promoting neurite outgrowth and functional recovery after SCI through positive AKT activity modulation. These results position MST2 as a potential therapeutic target for SCI, offering new insights into strategies for enhancing neuroregeneration and functional restoration.

11.
Neurotherapeutics ; 21(2): e00306, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237380

RESUMO

The mechanisms of central neuropathic pain (CNP) caused by spinal cord injury have not been sufficiently studied. We have found that the upregulation of astrocytic aquaporin-4 (AQP4) aggravated peripheral neuropathic pain after spinal nerve ligation in rats. Using a T13 spinal cord hemisection model, we showed that spinal AQP4 was markedly upregulated after SCI and mainly expressed in astrocytes in the spinal dorsal horn (SDH). Inhibition of AQP4 with TGN020 suppressed astrocyte activation, attenuated the development and maintenance of below-level CNP and promoted motor function recovery in vivo. In primary astrocyte cultures, TGN020 also changed cell morphology, diminished cell proliferation and suppressed astrocyte activation. Moreover, T13 spinal cord hemisection induced cell-surface abundance of the AQP4 channel and perivascular localization in the SDH. Targeted inhibition of AQP4 subcellular localization with trifluoperazine effectively diminished astrocyte activation in vitro and further ablated astrocyte activation, attenuated the development and maintenance of below-level CNP, and accelerated functional recovery in vivo. Together, these results provide mechanistic insights into the roles of AQP4 in the development and maintenance of below-level CNP. Intervening with AQP4, including targeting AQP4 subcellular localization, might emerge as a promising agent to prevent chronic CNP after SCI.


Assuntos
Aquaporina 4 , Neuralgia , Niacinamida , Traumatismos da Medula Espinal , Tiadiazóis , Animais , Ratos , Aquaporina 4/metabolismo , Astrócitos , Neuralgia/etiologia , Niacinamida/análogos & derivados , Ratos Sprague-Dawley , Medula Espinal , Corno Dorsal da Medula Espinal , Traumatismos da Medula Espinal/complicações
12.
Mar Environ Res ; 197: 106413, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38507984

RESUMO

The diversity, composition and performance of microbial communities within constructed wetlands (CW) were markedly influenced by spatio-temporal variations. A pilot-scale integrated vertical-flow constructed wetland (IVCW) as the biological purification unit within a recirculating aquaculture system (RAS) was established and monitored in this study. The investigation aimed to elucidate the responses of community structure, co-occurrence networks, and assembly mechanisms of the microbial community to spatial and temporal changes. Spatially, all a-diversity indices and microbial networks complexity were significantly higher in the upstream pool of the IVCW than in the downstream pool. Temporally, the richness increased over time, while the evenness showed a decreasing trend. The number of nodes and edges of microbial networks increased over time. Notably, the stable pollutant removal efficiencies were observed during IVCW operations, despite a-diversity and bacterial community networks exhibited significant variations across time. Functional redundancy emerged as a likely mechanism contributing to the stability of microbial ecosystem functions. Null model and neutral model analyses revealed the dominance of deterministic processes shaping microbial communities over time, with deterministic influences being more pronounced at lower a-diversity levels. DO and inorganic nitrogen emerged as the principal environmental factor influencing microbial community dynamics. This study provides a theoretical foundation for the regulation of microbial communities and environmental factors within the context of IVCW.


Assuntos
Microbiota , Áreas Alagadas , Águas Residuárias , Bactérias , Aquicultura , Nitrogênio/análise
13.
Mol Neurobiol ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363534

RESUMO

Spinal cord injury (SCI) is a catastrophic accidence with little effective treatment, and inflammation played an important role in that. Previous studies showed photobiomodulation (PBM) could effectively downregulate the process of inflammation with modification of macrophage polarization after SCI; however, the potential mechanism behind that is still unclear. In the presented study, we aimed to investigate the effect of PBM on the expression level of versican, a matrix molecular believed to be associated with inflammation, and tried to find the mechanism on how that could regulate the inflammation process. Using immunofluorescence technique and western blot, we found the expression level of versican is increased after injury and markedly downregulated by irradiation treatment. Using virus intrathecal injection, we found the knock-down of versican could produce the effect similar to that of PBM and might have an effect on inflammation and macrophage polarization after SCI. To further verify the deduction, we peptide the supernatant of astrocytes to induce M0, M1, and M2 macrophages. We found that the versican produced by astrocytes might have a role on the promotion of M2 macrophages to inflammatory polarization. Finally, we investigated the potential pathway in the regulation of M2 polarization with the induction of versican. This study tried to give an interpretation on the mechanism of inflammation inhibition for PBM in the perspective of matrix regulation. Our results might provide light on the inflammation regulation after SCI.

14.
Curr Microbiol ; 67(3): 379-87, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23657849

RESUMO

The effect of glucose and elemental sulfur on the growth and PHB accumulation of Acidiphilium cryptum DX1-1 was investigated. Meanwhile, the differential expressions of 19 genes related with PHB accumulation, sulfur metabolism and carbon fixed in heterotrophy, phytotrophy and mixotrophy were studied by RT-qPCR. The results showed that strain DX1-1 could accumulate PHB with sulfur as the energy substance and atmospheric CO2 as carbon resource. Glucose could improve the growth of strain DX1-1 cultured in medium with sulfur as the energy substance, and almost all the key enzyme-encoding genes related with PHB, sulfur metabolism and carbon fixed were basically up-regulated. PHB polymerase (Arcy_3030), ribulose-bisphosphate carboxylase (Acry_0825), ribulose-phosphate-epimerase (Acry_0022), and cysteine synthase A (Acry_2560) played important role in PHB accumulation, the modified expression of which could influence the PHB yield. With CO2 as carbon resource, the main initial substance of PHB accumulation for strain DX1-1 was acetyl-CoA, instead of acetate with the glucose as the carbon resource. Because of accumulating PHB by fixed atmospheric CO2 while independent of light, A. cryptum DX1-1 may have specifically potential in production of PHB.


Assuntos
Acidiphilium/metabolismo , Glucose/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Enxofre/metabolismo , Acidiphilium/genética , Dióxido de Carbono/metabolismo , Metabolismo Energético , Perfilação da Expressão Gênica , Redes e Vias Metabólicas/genética , Reação em Cadeia da Polimerase em Tempo Real
15.
Front Plant Sci ; 14: 1075625, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909451

RESUMO

Drip irrigation under plastic film mulching is an important technique to achieve water-conserving and high-efficiency rice (Oryza sativa L.) production in arid areas, but the grain yield of drip-irrigated rice is much lower than the expected yield (10.9-12.05 t·hm-2) in practical production applications. Therefore, we hope to further understand the photosynthetic physiological mechanism of drip-irrigated rice yield formation by optimizing water and nitrogen management during the growth period and provide a scientific reference for improving yield and nitrogen use efficiency (NUE) of drip-irrigated rice in arid areas. In 2020 and 2021, T-43 (a drought-resistant; V1) and Liangxiang-3 (a drought-sensitive cultivar; V2) were cultivated under two water treatments (W1: limited drip irrigation, 10200 m3·hm-2; W2: deficit drip irrigation, 8670 m3·hm-2) and three nitrogen fertilization modes with different ratios of seedling fertilizer:tillering fertilizer:panicle fertilizer:grain fertilizer (N1, 30%:50%:13%:7%; N2, 20%:40%:30%:10%; and N3, 10%:30%:40%:20%). The photosynthetic characteristics, nitrogen metabolism, yield, and NUE were analysed. The results showed that compared with other treatments, the W1N2 resulted in 153.4-930.3% higher glutamate dehydrogenase (GDH) contents and 19.2-49.7% higher net photosynthetic rates (P n) in the leaves of the two cultivars at 20 days after heading, as well as higher yields and NUE. The two cultivars showed no significant difference in the physiological changes at the panicle initiation stage, but the P n, abscisic acid (ABA), indole acetic acid (IAA), gibberellic acid (GA3), and zeatin riboside (ZR) levels of V1 were higher than those of V2 by 53.1, 25.1, 21.1, 46.3 and 36.8%, respectively, at 20 days after heading. Hence, V1 had a higher yield and NUE than V2. Principal component analysis revealed that P n and GDH were the most important physiological factors affecting rice yield performance. In summary, the W1N2 treatment simultaneously improved the yield and NUE of the drought-resistant rice cultivar (T-43) by enhancing the photosynthetic characteristics and nitrogen transport capacity and coordinating the balance of endogenous hormones (ABA, IAA, GA3, and ZR) in the leaves.

16.
Environ Technol ; : 1-13, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37190965

RESUMO

Effects of potassium monopersulfate (KMPS) on the nitrification activity, aquacultural water quality and bacterial community structure of sponge biocarriers with pre-cultured biofilm (SBBF) were analysed through shaking flask experiments and L. vannamei aquaculture experiments. Changes in the ammonia oxidation rate (AOR) and nitrite oxidation rate (NOR) of SBBF under six KMPS concentration treatments (0, 1, 2, 3, 4 and 5 mg/L) were studied. The results showed that the AOR and NOR of SBBF treated with high concentrations of KMPS (3, 4 and 5 mg/L) were significantly lower than those of the control group (CK) (p < 0.05). However, compared with the first dosing of NH4Cl and NaNO2, the inhibition of AOR and NOR by KMPS on AOR and NOR was weakened after the second and third dosing times. That is, AOR and NOR can recover partially or completely over time. The L. vannamei aquaculture experiment was performed using four concentrations of KMPS (0, 2, 4 and 8 mg/L). The results showed that with increasing KMPS dosage, the average and peak concentrations of NH4+-N and NO2--N in each treatment significantly increased (P < 0.05), and the final body weight of shrimp significantly decreased (P < 0.05). Furthermore the highest dose (8.0 mg/L) of KMPS reduced the survival rate by 9.33% compared to the CK. High-throughput sequencing analysis of the biofilm structure showed that the relative abundances of Nitrospirota, Nitrosomonas and Nitrococcus, which are related to nitrogen cycling, and beneficial bacteria including Firmicutes and Bacilli decreased with the addition of KMPS (p < 0.05).

17.
Front Microbiol ; 14: 1211649, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37577432

RESUMO

Introduction: Massilia bacteria are widely distributed and have various ecological functions. Preliminary studies have shown that Massilia is the dominant species in constructed wetland ecosystems, but its species composition and distribution in constructed wetlands are still unclear. Methods: In this paper, the in-house-designed primers were used to construct a 16S rDNA clone library of Massilia. The RFLP sequence analysis method was used to analyze the diversity of Massilia clone library and the composition of Massilia in sewage, substrate, plant rhizosphere, plant phyllosphere and air in a constructed wetland sewage treatment system. Redundancy analysis (RDA) and canonical correspondence analysis (CCA) were used to analyze the correlation between environmental factors and the population characteristics of Massilia in the corresponding environment. The dominant species of Massilia were analyzed for differences. Results: The results showed that the 16S rDNA clone library in primer 5 worked well. According to the clone library diversity index analysis, the richness of Massilia varied significantly in different environments in different seasons, where the overall summer and autumn richness was higher than that in the spring and winter. The relative abundance of 5 Massilia in the constructed wetland ecosystem was greater than 1% in all samples, which were M. alkalitolerans, M. albidiflava, M. aurea, M. brevitalea, and M. timonae. The seasonal variation of dominant genera was significantly correlated with environmental factors in constructed wetlands. Discussion: The above results indicated that the species of Massilia were abundant and widely distributed in the constructed wetland ecosystem, and there were significant seasonal differences. In addition, the Massilia clone library of constructed wetland was constructed for the first time in this study and the valuable data of Massilia community structure were provided, which was conducive to the further study of microbial community in constructed wetland.

18.
Huan Jing Ke Xue ; 44(3): 1484-1496, 2023 Mar 08.
Artigo em Zh | MEDLINE | ID: mdl-36922209

RESUMO

In order to explore the seasonal variation and influencing factors of bacterial community structure in storage reservoirs, the impact of environmental factors must first be examined. In this study, the seasonal variation in bacterial community structure and its response to water quality factors were explored by monitoring the water quality of Qingdao Jihongtan Reservoir, the only reservoir of the Yellow River diversion project, using high-throughput sequencing technology and symbiotic network analysis. The results showed that the diversity and richness of bacterial communities were highest in summer and lowest in winter, and those in the inlet were higher than those in the outlet. The structure of the bacterial community was similar in spring and winter and in summer to autumn. The dominant bacteria phyla were:Actinobacteriota (6.63%-57.38%), Proteobacteria (11.32%-48.60%), Bacteroidota (5.05%-25.74%), and Cyanobacteria (0.65%-24.74%). Additionally, the abundances of Chloroflexi, Dependentiae, Fusobacteriota, and Margulisbacteria were the highest in autumn and the lowest in winter. The dominant bacterial genera were:hgcI_clade (3.72%-34.66%), CL500_29_marine_group (0.31%-20.13%), and Limnohabitans (0.16%-10.37%). Further, the abundances of Flavobacterium, Polaromonas, and Rhodoferax were the highest in winter and the lowest in summer; the trend of Domibacillus and Limnobacter was the opposite. The abundance of Proteobacteria and Campilobacteria in the inlet was significantly higher than that in the outlet, and the Planctomycetota showed the opposite. The abundances of Dinghuibacter, Arenimonas, and Rhodobacter in the inlet were significantly higher than those in the outlet. Competition and antagonism dominated the interaction relationship of bacterial communities in spring, whereas mutualism dominated in winter. There were significant differences among key species in the symbiotic network at different seasons and sampling sites. Water temperature, DO, water storage capacity, and water storage sources had a great influence on bacterial community structure in the Jihongtan Reservoir.


Assuntos
Cianobactérias , Estações do Ano , Qualidade da Água , Rios
19.
Neural Regen Res ; 18(8): 1782-1788, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36751806

RESUMO

As a classic noninvasive physiotherapy, photobiomodulation, also known as low-level laser therapy, is widely used for the treatment of many diseases and has anti-inflammatory and tissue repair effects. Photobiomodulation has been shown to promote spinal cord injury repair. In our previous study, we found that 810 nm low-level laser therapy reduced the M1 polarization of macrophages and promoted motor function recovery. However, the mechanism underlying this inhibitory effect is not clear. In recent years, transcriptome sequencing analysis has played a critical role in elucidating the progression of diseases. Therefore, in this study, we performed M1 polarization on induced mouse bone marrow macrophages and applied low-level laser therapy. Our sequencing results showed the differential gene expression profile of photobiomodulation regulating macrophage polarization. We analyzed these genes using gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Networks of protein-protein interactions and competing RNA endogenous networks were constructed. We found that photobiomodulation inhibited STAT3 expression through increasing the expression of miR-330-5p, and that miR-330-5p binding to STAT3 inhibited STAT3 expression. Inducible nitric oxide synthase showed trends in changes similar to the changes in STAT3 expression. Finally, we treated a mouse model of spinal cord injury using photobiomodulation and confirmed that photobiomodulation reduced inducible nitric oxide synthase and STAT3 expression and promoted motor function recovery in spinal cord injury mice. These findings suggest that STAT3 may be a potential target of photobiomodulation, and the miR-330-5p/STAT3 pathway is a possible mechanism by which photobiomodulation has its biological effects.

20.
Mol Neurobiol ; 60(8): 4502-4516, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37106222

RESUMO

During spinal cord injury (SCI), the homeostasis of the cellular microenvironment in the injured area is seriously disrupted, which makes it extremely difficult for injured neurons with regenerative ability to repair, emphasizing the importance of restoring the cellular microenvironment at the injury site. Neurons interact closely with other nerve cells in the central nervous system (CNS) and regulate these cells. However, the specific mechanisms by which neurons modulate the cellular microenvironment remain unclear. Exosomes were isolated from the primary neurons, and their effects on astrocytes, microglia, oligodendrocyte progenitor cells (OPCs), neurons, and neural stem cells were investigated by quantifying the expression of related proteins and mRNA. A mouse SCI model was established, and neuron-derived exosomes were injected into the mice by the caudal vein to observe the recovery of motor function in mice and the changes in the nerve cells in the lesion area. Neuron-derived exosomes could reverse the activation of microglia and astrocytes and promote the maturation of OPCs in vivo and in vitro. In addition, neuron-derived exosomes promoted neurite outgrowth of neurons and the differentiation of neural stem cells into neurons. Moreover, our experiments showed that neuron-derived exosomes enhanced motor function recovery and nerve regeneration in mice with SCI. Our findings highlight that neuron-derived exosomes could promote the repair of the injured spinal cord by regulating the cellular microenvironment of neurons and could be a promising treatment for spinal cord injury.


Assuntos
Exossomos , Traumatismos da Medula Espinal , Camundongos , Animais , Exossomos/metabolismo , Neurônios/metabolismo , Traumatismos da Medula Espinal/patologia , Medula Espinal/patologia , Microambiente Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA