Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 27(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35889401

RESUMO

Enzymatic biocatalysis is a sustainable technology. Enzymes are versatile and highly efficient biocatalysts, and have been widely employed due to their biodegradable nature. However, because the three-dimensional structure of these enzymes is predominantly maintained by weaker non-covalent interactions, external conditions, such as temperature and pH variations, as well as the presence of chemical compounds, can modify or even neutralize their biological activity. The enablement of this category of processes is the result of the several advances in the areas of molecular biology and biotechnology achieved over the past two decades. In this scenario, metal-organic frameworks (MOFs) are highlighted as efficient supports for enzyme immobilization. They can be used to 'house' a specific enzyme, providing it with protection from environmental influences. This review discusses MOFs as structures; emphasizes their synthesis strategies, properties, and applications; explores the existing methods of using immobilization processes of various enzymes; and lists their possible chemical modifications and combinations with other compounds to formulate the ideal supports for a given application.


Assuntos
Estruturas Metalorgânicas , Biocatálise , Biotecnologia , Enzimas Imobilizadas/química , Estruturas Metalorgânicas/química , Temperatura
2.
3 Biotech ; 10(6): 254, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32426206

RESUMO

In this work, the concept of lipase cocktail has been proposed in the ultrasound-assisted hydrolysis of coconut oil. Lipase from Thermomyces lanuginosus (TLL), lipase from Rhizomucor miehei (RML), and lipase B from Candida antarctica (CALB) were evaluated as biocatalysts in different combinations. The best conversion (33.66%) was achieved using only RML; however, the best lipase cocktail (75% RML and 25% CALB) proposed by the triangular response surface was used to achieve higher conversions. At the best lipase cocktail, reaction parameters [temperature, biocatalyst content and molar ratio (water/oil)] were optimized by a Central Composite Design, allowing to obtain more than 98% of conversion in the hydrolysis of coconut oil in 3 h of incubation at 37 kHz, 300 W and 45 °C by using 20% of the lipase cocktail (w/w) and a molar ratio of 7.5:1 (water/oil). The lipase cocktail retained about 50% of its initial activity after three consecutive cycles of hydrolysis. To the authors' knowledge, up to date, this communication is the first report in the literature for the ultrasound-assisted hydrolysis of coconut oil catalyzed by a cocktail of lipases. Under ultrasound irradiation, the concept of lipase cocktail was successfully applied, and this strategy could be useful for the other types of reactions using heterogeneous substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA