Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 57(15): 4228-4231, 2018 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-29791398

RESUMO

A photonic crystal fiber Mach-Zehnder interferometer design was optimized to obtain high performance and ultralow chirp. Two long-period gratings were used to excite the cladding modes, and the rich structure of the cladding was tailored to obtain a slightly chirped free spectral range, as required by the Telecommunication Standardization Sector of the International Telecommunication Union (ITU-T) Norm G.694.1. Finally, a fabrication tolerance analysis was performed. The advantages of the proposed device are an ultralow chirp, high bandwidth, and fabrication robustness tolerance.

2.
Opt Express ; 25(19): 23517-23522, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-29041651

RESUMO

A fully three-dimensional carpet cloak presenting invisibility in all viewing angles is theoretically demonstrated. The design is developed using transformation optics and three-dimensional quasi-conformal mapping. Parametrization strategy and numerical optimization of the coordinate transformation deploying a quasi-Newton method is applied. A discussion about the minimum achievable anisotropy in the 3D transformation optics is presented. The method allows to reduce the anisotropy in the cloak and an isotropic medium could be considered. Numerical simulations confirm the strategy employed enabling the design of an isotropic reflectionless broadband carpet cloak independently of the incident light direction and polarization.

3.
Opt Express ; 24(15): 16465-70, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27464099

RESUMO

In this paper we demonstrate the possibility to achieve 3-dimensional quasi-conformal transformation optics through parametrization and numerical optimization without using sliding boundary conditions. The proposed technique, which uses a quasi-Newton method, is validated in two cylindrical waveguide bends as design examples. Our results indicate an arbitrarily small average anisotropy can be achieved in 3D transformation optics as the number of degrees of freedom provided by the parametrization was increased. The waveguide simulations confirm modal preservation when the residual anisotropy is neglected.

4.
Opt Express ; 22(15): 18490-8, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25089468

RESUMO

In this work the least squares method is used to reduce anisotropy in transformation optics technique. To apply the least squares method a power series is added on the coordinate transformation functions. The series coefficients were calculated to reduce the deviations in Cauchy-Riemann equations, which, when satisfied, result in both conformal transformations and isotropic media. We also present a mathematical treatment for the special case of transformation optics to design waveguides. To demonstrate the proposed technique a waveguide with a 30° of bend and with a 50% of increase in its output width was designed. The results show that our technique is simultaneously straightforward to be implement and effective in reducing the anisotropy of the transformation for an extremely low value close to zero.

5.
ACS Appl Mater Interfaces ; 16(32): 42942-42946, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39087324

RESUMO

Conventional magnetophotonic nanostructures typically function within narrow wavelength and incident angle ranges, where resonance is observed and magneto-optical (MO) effects are amplified. Expanding these operational ranges may allow for improved applications, including in (bio)sensing devices. In this study, we describe a hybrid magnetoplasmonic waveguide grating (HMPWG) in which the coupling of plasmonic resonances and waveguide modes leads to enhanced MO effects and sensitivity, according to full-wave electromagnetic simulations. High transverse magneto-optical Kerr effect (TMOKE) signals were observed for the full range of wavelengths and angles investigated, i.e., for θinc ≥ 1° and 500 nm ≤ λ ≤ 850 nm. As a proof-of-concept we verified that using the HMPWG nanostructure with an aqueous solution as superstrate one may obtain a sensitivity in variation of the refractive index unit (RIU) of S = 166°/RIU and S = 230 nm/RIU in angle and wavelength interrogation modes, respectively. Upon comparing with conventional magnetoplasmonic gratings, which only enable excitation of plasmonic resonances, we demonstrate that HMPWG nanostructures can be further optimized to reach not only high sensitivity but also high resolution in sensing and biosensing.

6.
Opt Express ; 19(4): 3124-9, 2011 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-21369134

RESUMO

We demonstrate a novel, compact and low-loss photonic crystal fiber modal Mach-Zehnder interferometer with potential applications to sensing and WDM telecommunications. By selectively collapsing a ~1-mm-long section of a hole next to the solid core, a pair of modes of the post-processed structure are excited and interfere at its exit. A modulation depth of up to ~13 dB and an insertion loss as low as 2.8 dB were achieved. A temperature sensitivity of -53.4 pm/°C was measured, making the device suitable for temperature sensing.

7.
Opt Express ; 19(24): 24687-98, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-22109496

RESUMO

A photonic crystal fiber (PCF) with a section of one of the holes next to the solid core filled with an index-matched liquid is studied. Liquid filling alters the core geometry, which locally comprises the original silica core, the liquid channel and the silica around it. It is demonstrated that when light reaches the filled section, it periodically and efficiently couples to the liquid, via the excitation of a number of modes of the composite core, with coupling lengths ranging from tens to hundreds of microns. The resulting modal-interference-modulated spectrum shows temperature sensitivity as high as 5.35 nm/°C. The proposed waveguide geometry presents itself as an interesting way to pump and/or to probe liquid media within the fiber, combining advantages usually found separately in liquid-filled hollow-core PCFs (high light-liquid overlap) and in solid-core PCFs (low insertion losses). Therefore, pumping and luminescence guiding with a PCF filled with a Rhodamine solution is also demonstrated.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Modelos Químicos , Nefelometria e Turbidimetria/métodos , Refratometria/métodos , Soluções/química , Simulação por Computador , Cristalização , Luz , Espalhamento de Radiação
8.
Opt Express ; 18(3): 3181-6, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20174157

RESUMO

We use transformation optics to demonstrate 2D silicon nanolenses, with wavelength-independent focal point. The lenses are designed and fabricated with dimensions ranging from 5.0 microm x 5.0 microm to 20 microm x 20 microm. According to numerical simulations the lenses are expected to focus light over a broad wavelength range, from 1.30 mum to 1.60 mum. Experimental results are presented from 1.52 microm to 1.61 microm.

9.
Opt Express ; 15(22): 14335-47, 2007 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-19550710

RESUMO

This paper carries out a rigorous analysis of supercontinuum generation in an improved highly asymmetric microstructured fiber (MF) design. This geometry, defined simply as D-MF, has the advantage of being produced with a regular stacking and drawing technology. We have obtained birefringence values on the order of 4.87x10(-3) at the adopted pump wavelength and a significantly smaller effective area when compared to a whole MF, which makes this fiber quite attractive for SCG. Therefore, this D-MF design is a promising alternative for SCG since it provides new degrees of freedom to control field confinement, birefringence, and dispersion characteristics of MFs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA