Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Neuropathol ; 147(1): 50, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443601

RESUMO

TDP-43 is an aggregation-prone protein which accumulates in the hallmark pathological inclusions of amyotrophic lateral sclerosis (ALS). However, the analysis of deeply phenotyped human post-mortem samples has shown that TDP-43 aggregation, revealed by standard antibody methods, correlates poorly with symptom manifestation. Recent identification of cryptic-splicing events, such as the detection of Stathmin-2 (STMN-2) cryptic exons, are providing evidence implicating TDP-43 loss-of-function as a potential driving pathomechanism but the temporal nature of TDP-43 loss and its relation to the disease process and clinical phenotype is not known. To address these outstanding questions, we used a novel RNA aptamer, TDP-43APT, to detect TDP-43 pathology and used single molecule in situ hybridization to sensitively reveal TDP-43 loss-of-function and applied these in a deeply phenotyped human post-mortem tissue cohort. We demonstrate that TDP-43APT identifies pathological TDP-43, detecting aggregation events that cannot be detected by classical antibody stains. We show that nuclear TDP-43 pathology is an early event, occurring prior to cytoplasmic accumulation and is associated with loss-of-function measured by coincident STMN-2 cryptic splicing pathology. Crucially, we show that these pathological features of TDP-43 loss-of-function precede the clinical inflection point and are not required for region specific clinical manifestation. Furthermore, we demonstrate that gain-of-function in the form of extensive cytoplasmic accumulation, but not loss-of-function, is the primary molecular correlate of clinical manifestation. Taken together, our findings demonstrate implications for early diagnostics as the presence of STMN-2 cryptic exons and early TDP-43 aggregation events could be detected prior to symptom onset, holding promise for early intervention in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Aptâmeros de Nucleotídeos , Humanos , Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Splicing de RNA , Anticorpos
2.
Eur J Neurosci ; 56(11): 6039-6054, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36215153

RESUMO

Regional brain iron accumulation is observed in many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease, and is associated with cognitive decline. We explored associations between age, cognition and iron content in grey matter regions and hippocampal subfields in 380 participants of the Aberdeen children of the 1950s cohort and their first-generation relatives (aged 26-72 years). Participants underwent cognitive assessment at the time of MRI scanning. Quantitative susceptibility mapping of these MRI data was used to assess iron content in grey matter regions and in hippocampal subfields. Principle component analysis was performed on cognitive test scores to create a general cognition score. Spline analysis was used with the Akaike information criterion to determine if order 1, 2 or 3 natural splines were optimal for assessing non-linear relationships between regional iron and age. Multivariate linear models were used to assess associations between regional iron and cognition. Higher iron correlated with older age in the left putamen across all ages and in the right putamen of only participants over 58. Whereas a decrease in iron with older age was observed in the right thalamus and left pallidum across all ages. Right amygdala iron levels were associated with poorer general cognition scores and poorer immediate recall scores. Iron was not associated with any measures of cognitive performance in other regions of interest. Our results suggest that, whilst iron in some regions was associated with cognitive performance, there is an overall lack of association between regional iron content and cognitive ability in cognitively healthy individuals.


Assuntos
Doença de Alzheimer , Substância Cinzenta , Criança , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Substância Cinzenta/diagnóstico por imagem , Encéfalo , Cognição , Imageamento por Ressonância Magnética/métodos , Hipocampo/diagnóstico por imagem
3.
bioRxiv ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38854008

RESUMO

Background: Cognitive and behavioural symptoms associated with amyotrophic lateral sclerosis and frontotemporal spectrum disorders (ALSFTSD) are thought to be driven, at least in part, by the pathological accumulation of TDP-43. Methods: Here we examine post-mortem tissue from six brain regions associated with cognitive and behavioural symptoms in a cohort of 30 people with sporadic ALS (sALS), a proportion of which underwent standardized neuropsychological behavioural assessment as part of the Edinburgh Cognitive ALS Screen (ECAS). Results: Overall, the behavioural screen performed as part of the ECAS predicted accumulation of pathological phosphorylated TDP-43 (pTDP-43) with 100% specificity and 86% sensitivity in behaviour-associated brain regions. Notably, of these regions, pathology in the amygdala was the most predictive correlate of behavioural dysfunction in sALS. In the amygdala of sALS patients, we show variation in morphology, cell type predominance, and severity of pTDP-43 pathology. Further, we demonstrate that the presence and severity of intra-neuronal pTDP-43 pathology, but not astroglial pathology, or phosphorylated Tau pathology, is associated with behavioural dysfunction. Cases were also evaluated using a TDP-43 aptamer (TDP-43APT), which revealed that pathology was not only associated with behavioural symptoms, but also with ferritin levels, a measure of brain iron. Conclusions: Intra-neuronal pTDP-43 and cytoplasmic TDP-43APT pathology in the amygdala is associated with behavioural symptoms in sALS. TDP-43APT staining intensity is also associated with increased ferritin, regardless of behavioural phenotype, suggesting that ferritin increases may occur upstream of clinical manifestation, in line with early TDP-43APT pathology, representing a potential region-specific imaging biomarker of early disease in ALS.

4.
PLoS One ; 15(10): e0240697, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33057378

RESUMO

Iron is involved in many processes in the brain including, myelin generation, mitochondrial function, synthesis of ATP and DNA and the cycling of neurotransmitters. Disruption of normal iron homeostasis can result in iron accumulation in the brain, which in turn can partake in interactions which amplify oxidative damage. The development of MRI techniques for quantifying brain iron has allowed for the characterisation of the impact that brain iron has on cognition and neurodegeneration. This review uses a systematic approach to collate and evaluate the current literature which explores the relationship between brain iron and cognition. The following databases were searched in keeping with a predetermined inclusion criterion: Embase Ovid, PubMed and PsychInfo (from inception to 31st March 2020). The included studies were assessed for study characteristics and quality and their results were extracted and summarised. This review identified 41 human studies of varying design, which statistically assessed the relationship between brain iron and cognition. The most consistently reported interactions were in the Caudate nuclei, where increasing iron correlated poorer memory and general cognitive performance in adulthood. There were also consistent reports of a correlation between increased Hippocampal and Thalamic iron and poorer memory performance, as well as, between iron in the Putamen and Globus Pallidus and general cognition. We conclude that there is consistent evidence that brain iron is detrimental to cognitive health, however, more longitudinal studies will be required to fully understand this relationship and to determine whether iron occurs as a primary cause or secondary effect of cognitive decline.


Assuntos
Encéfalo/fisiologia , Cognição/fisiologia , Ferro/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA