Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Development ; 149(10)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35635101

RESUMO

In most sexually reproducing animals, sperm entry provides the signal to initiate the final stages of female meiosis. In Caenorhabditis elegans, this signal is required for completion of female anaphase I and entry into meiosis II (MII). memi-1/2/3 (meiosis-to-mitosis) encode maternal components that facilitate this process; memi-1/2/3(RNAi) results in a skipped-MII phenotype. Previously, we used a gain-of-function mutation, memi-1(sb41), to identify genetic suppressors that represent candidates for the sperm-delivered signal. Herein, we characterize two suppressors of memi-1(sb41): gskl-1 and gskl-2. Both genes encode functionally redundant sperm glycogen synthase kinase, type 3 (GSK3) protein kinases. Loss of both genes causes defects in male spermatogenesis, sperm pseudopod treadmilling and paternal-effect embryonic lethality. The two kinases locate within the pseudopod of activated sperm, suggesting that they directly or indirectly regulate the sperm cytoskeletal polymer major sperm protein (MSP). The GSK3 genes genetically interact with another memi-1(sb41) suppressor, gsp-4, which encodes a sperm-specific PP1 phosphatase, previously proposed to regulate MSP dynamics. Moreover, gskl-2 gsp-4; gskl-1 triple mutants often skip female MII, similar to memi-1/2/3(RNAi). The GSK3 kinases and PP1 phosphatases perform similar sperm-related functions and work together for post-fertilization functions in the oocyte that involve MEMI.


Assuntos
Caenorhabditis elegans , Motilidade dos Espermatozoides , Animais , Caenorhabditis elegans/metabolismo , Feminino , Fertilização/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Masculino , Meiose/genética , Espermatozoides/fisiologia
2.
Development ; 143(7): 1160-9, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26893341

RESUMO

Developmentally regulated cell cycle arrest is a fundamental feature of neurogenesis, whose significance is poorly understood. During Drosophila sensory organ (SO) development, primary progenitor (pI) cells arrest in G2 phase for precisely defined periods. Upon re-entering the cell cycle in response to developmental signals, these G2-arrested precursor cells divide and generate specialized neuronal and non-neuronal cells. To study how G2 phase arrest affects SO lineage specification, we forced pI cells to divide prematurely. This produced SOs with normal neuronal lineages but supernumerary non-neuronal cell types because prematurely dividing pI cells generate a secondary pI cell that produces a complete SO and an external precursor cell that undergoes amplification divisions. pI cells are therefore able to undergo self-renewal before transit to a terminal mode of division. Regulation of G2 phase arrest thus serves a dual role in SO development: preventing progenitor self-renewal and synchronizing cell division with developmental signals. Cell cycle arrest in G2 phase temporally coordinates the precursor cell proliferation potential with terminal cell fate determination to ensure formation of organs with a normal set of sensory cells.


Assuntos
Autorrenovação Celular/fisiologia , Drosophila/embriologia , Pontos de Checagem da Fase G2 do Ciclo Celular/fisiologia , Neurogênese/fisiologia , Células-Tronco/citologia , Animais , Proteína Quinase CDC2/metabolismo , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Proteínas de Drosophila
3.
Cell Mol Life Sci ; 67(13): 2195-213, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20339898

RESUMO

The Caenorhabditis elegans one-cell embryo is a powerful system in which to study microtubule organization because this large cell assembles both meiotic and mitotic spindles within the same cytoplasm over the course of 1 h in a stereotypical manner. The fertilized oocyte assembles two consecutive acentrosomal meiotic spindles that function to reduce the replicated maternal diploid set of chromosomes to a single-copy haploid set. The resulting maternal DNA then unites with the paternal DNA to form a zygotic diploid complement, around which a centrosome-based mitotic spindle forms. The early C. elegans embryo is amenable to live-cell imaging and electron tomography, permitting a detailed structural comparison of the meiotic and mitotic modes of spindle assembly.


Assuntos
Caenorhabditis elegans/embriologia , Fuso Acromático/fisiologia , Adenosina Trifosfatases/metabolismo , Animais , Centríolos/fisiologia , Centrossomo/fisiologia , Katanina , Meiose , Microtúbulos/metabolismo , Mitose
4.
Elife ; 102021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34114562

RESUMO

Most female meiotic spindles undergo striking morphological changes while transitioning from metaphase to anaphase. The ultra-structure of meiotic spindles, and how changes to this structure correlate with such dramatic spindle rearrangements remains largely unknown. To address this, we applied light microscopy, large-scale electron tomography and mathematical modeling of female meiotic Caenorhabditis elegans spindles. Combining these approaches, we find that meiotic spindles are dynamic arrays of short microtubules that turn over within seconds. The results show that the metaphase to anaphase transition correlates with an increase in microtubule numbers and a decrease in their average length. Detailed analysis of the tomographic data revealed that the microtubule length changes significantly during the metaphase-to-anaphase transition. This effect is most pronounced for microtubules located within 150 nm of the chromosome surface. To understand the mechanisms that drive this transition, we developed a mathematical model for the microtubule length distribution that considers microtubule growth, catastrophe, and severing. Using Bayesian inference to compare model predictions and data, we find that microtubule turn-over is the major driver of the spindle reorganizations. Our data suggest that in metaphase only a minor fraction of microtubules, those closest to the chromosomes, are severed. The large majority of microtubules, which are not in close contact with chromosomes, do not undergo severing. Instead, their length distribution is fully explained by growth and catastrophe. This suggests that the most prominent drivers of spindle rearrangements are changes in nucleation and catastrophe rate. In addition, we provide evidence that microtubule severing is dependent on katanin.


Assuntos
Caenorhabditis elegans/metabolismo , Meiose , Microtúbulos/metabolismo , Oócitos/metabolismo , Fuso Acromático/metabolismo , Anáfase , Animais , Teorema de Bayes , Proteínas de Caenorhabditis elegans/metabolismo , Segregação de Cromossomos , Cromossomos/metabolismo , Tomografia com Microscopia Eletrônica/métodos , Feminino , Katanina/metabolismo , Metáfase , Modelos Teóricos
5.
Dev Cell ; 9(2): 223-36, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16054029

RESUMO

Microtubules (MTs) are dynamic polymers that undergo cell cycle and position-sensitive regulation of polymerization and depolymerization. Although many different factors that regulate MT dynamics have been described, to date there has been no systematic analysis of genes required for MT dynamics in a single system. Here, we use a transgenic EB1::GFP strain, which labels the growing plus ends of MTs, to analyze the growth rate, nucleation rate, and distribution of growing MTs in the Caenorhabditis elegans embryo. We also present the results from an RNAi screen of 40 genes previously implicated in MT-based processes. Our findings suggest that fast microtubule growth is dependent on the amount of free tubulin and the ZYG-9-TAC-1 complex. Robust MT nucleation by centrosomes requires AIR-1, SPD-2, SPD-5, and gamma-tubulin. However, we found that centrosomes do not nucleate MTs to saturation; rather, the depolymerizing kinesin-13 subfamily member KLP-7 is required to limit microtubule outgrowth from centrosomes.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/metabolismo , Centro Organizador dos Microtúbulos/fisiologia , Microtúbulos/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Centrômero/fisiologia , Dineínas/metabolismo , Embrião não Mamífero/fisiologia , Proteínas de Fluorescência Verde/genética , Humanos , Cinesinas/metabolismo , Cinetocoros/fisiologia , Metáfase , Microtúbulos/fisiologia , Mitose , Tubulina (Proteína)/metabolismo
6.
Dev Cell ; 9(2): 237-48, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16054030

RESUMO

In vertebrates, the microtubule binding protein TPX2 is required for meiotic and mitotic spindle assembly. TPX2 is also known to bind to and activate Aurora A kinase and target it to the spindle. However, the relationship between the TPX2-Aurora A interaction and the role of TPX2 in spindle assembly is unclear. Here, we identify TPXL-1, a C. elegans protein that is the first characterized invertebrate ortholog of TPX2. We demonstrate that an essential role of TPXL-1 during mitosis is to activate and target Aurora A to microtubules. Our data suggest that this targeting stabilizes microtubules connecting kinetochores to the spindle poles. Thus, activation and targeting of Aurora A appears to be an ancient and conserved function of TPX2 that plays a central role in mitotic spindle assembly.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/metabolismo , Proteínas de Transporte/fisiologia , Proteínas de Ciclo Celular/metabolismo , Microtúbulos/fisiologia , Proteínas Quinases/metabolismo , Fuso Acromático/fisiologia , Proteínas de Xenopus/metabolismo , Sequência de Aminoácidos , Animais , Aurora Quinases , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Embrião não Mamífero/fisiologia , Ativação Enzimática , Humanos , Cinetocoros/fisiologia , Proteínas Associadas aos Microtúbulos/genética , Dados de Sequência Molecular , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases , Homologia de Sequência de Aminoácidos , Fuso Acromático/genética , Proteínas de Xenopus/genética
7.
Nature ; 425(6955): 311-6, 2003 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-13679921

RESUMO

Many biological processes, such as development and cell cycle progression are tightly controlled by selective ubiquitin-dependent degradation of key substrates. In this pathway, the E3-ligase recognizes the substrate and targets it for degradation by the 26S proteasome. The SCF (Skp1-Cul1-F-box) and ECS (Elongin C-Cul2-SOCS box) complexes are two well-defined cullin-based E3-ligases. The cullin subunits serve a scaffolding function and interact through their C terminus with the RING-finger-containing protein Hrt1/Roc1/Rbx1, and through their N terminus with Skp1 or Elongin C, respectively. In Caenorhabditis elegans, the ubiquitin-ligase activity of the CUL-3 complex is required for degradation of the microtubule-severing protein MEI-1/katanin at the meiosis-to-mitosis transition. However, the molecular composition of this cullin-based E3-ligase is not known. Here we identified the BTB-containing protein MEL-26 as a component required for degradation of MEI-1 in vivo. Importantly, MEL-26 specifically interacts with CUL-3 and MEI-1 in vivo and in vitro, and displays properties of a substrate-specific adaptor. Our results suggest that BTB-containing proteins may generally function as substrate-specific adaptors in Cul3-based E3-ubiquitin ligases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Adenosina Trifosfatases/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Culina , Ligases/química , Ligases/metabolismo , Adenosina Trifosfatases/genética , Alelos , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/química , Substâncias Macromoleculares , Meiose , Microtúbulos/metabolismo , Mitose , Dados de Sequência Molecular , Mutação/genética , Ligação Proteica , Subunidades Proteicas/metabolismo , Interferência de RNA , Especificidade por Substrato , Ubiquitina-Proteína Ligases
8.
Mol Biol Cell ; 18(6): 2336-45, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17429077

RESUMO

The Chaperonin Containing Tcp1 (CCT) maintains cellular protein folding homeostasis in the eukaryotic cytosol by assisting the biogenesis of many proteins, including actins, tubulins, and regulators of the cell cycle. Here, we demonstrate that the essential and conserved eukaryotic phosducin-like protein 2 (PhLP2/PLP2) physically interacts with CCT and modulates its folding activity. Consistent with this functional interaction, temperature-sensitive alleles of Saccharomyces cerevisiae PLP2 exhibit cytoskeletal and cell cycle defects. We uncovered several high-copy suppressors of the plp2 alleles, all of which are associated with G1/S cell cycle progression but which do not appreciably affect cytoskeletal protein function or fully rescue the growth defects. Our data support a model in which Plp2p modulates the biogenesis of several CCT substrates relating to cell cycle and cytoskeletal function, which together contribute to the essential function of PLP2.


Assuntos
Proteínas de Transporte/metabolismo , Ciclo Celular/fisiologia , Chaperoninas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Actinas/metabolismo , Alelos , Proteínas de Transporte/genética , Núcleo Celular/metabolismo , Chaperonina com TCP-1 , Chaperoninas/genética , Proteínas do Citoesqueleto/genética , Proteínas de Ligação ao GTP/metabolismo , Humanos , Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/genética , Fenótipo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Temperatura
9.
Dev Biol ; 313(1): 320-34, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18062952

RESUMO

The efficient folding of actin and tubulin in vitro and in Saccharomyces cerevisiae is known to require the molecular chaperones prefoldin and CCT, yet little is known about the functions of these chaperones in multicellular organisms. Whereas none of the six prefoldin genes are essential in yeast, where prefoldin-independent folding of actin and tubulin is sufficient for viability, we demonstrate that reducing prefoldin function by RNAi in Caenorhabditis elegans causes defects in cell division that result in embryonic lethality. Our analyses suggest that these defects result mainly from a decrease in alpha-tubulin levels and a subsequent reduction in the microtubule growth rate. Prefoldin subunit 1 (pfd-1) mutant animals with maternally contributed PFD-1 develop to the L4 larval stage with gonadogenesis defects that include aberrant distal tip cell migration. Importantly, RNAi knockdown of prefoldin, CCT or tubulin in developing animals phenocopy the pfd-1 cell migration phenotype. Furthermore, reducing CCT function causes more severe phenotypes (compared with prefoldin knockdown) in the embryo and developing gonad, consistent with a broader role for CCT in protein folding. Overall, our results suggest that efficient chaperone-mediated tubulin biogenesis is essential in C. elegans, owing to the critical role of the microtubule cytoskeleton in metazoan development.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Divisão Celular , Movimento Celular , Embrião não Mamífero/metabolismo , Chaperonas Moleculares/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Centrossomo , Citocinese , Embrião não Mamífero/citologia , Meiose , Microtúbulos/metabolismo , Fuso Acromático/metabolismo
10.
Curr Biol ; 16(19): 1944-9, 2006 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-17027492

RESUMO

Katanin is a heterodimer that exhibits ATP-dependent microtubule-severing activity in vitro. In Xenopus egg extracts, katanin activity correlates with the addition of cyclin B/cdc2, suggesting a role for microtubule severing in the disassembly of long interphase microtubules as the cell prepares for mitosis. However, studies from plant cells, cultured neurons, and nematode embryos suggest that katanin could be required for the organization or postnucleation processing of microtubules, rather than the dissolution of microtubule structures. Here we reexamine katanin's role by studying acentrosomal female meiotic spindles in C. elegans embryos. In mutant embryos lacking katanin, microtubules form around meiotic chromatin but do not organize into bipolar spindles. By using electron tomography, we found that katanin converts long microtubule polymers into shorter microtubule fragments near meiotic chromatin. We further show that turning on katanin during mitosis also creates a large pool of short microtubules near the centrosome. Furthermore, the identification of katanin-dependent microtubule lattice defects supports a mechanism involving an initial perforation of the protofilament wall. Taken together, our data suggest that katanin is used during meiotic spindle assembly to increase polymer number from a relatively inefficient chromatin-based microtubule nucleation pathway.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/enzimologia , Meiose/fisiologia , Proteínas dos Microtúbulos/fisiologia , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Adenosina Trifosfatases/genética , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans/genética , Cromatina/ultraestrutura , Simulação por Computador , Embrião não Mamífero/citologia , Embrião não Mamífero/enzimologia , Katanina , Proteínas dos Microtúbulos/genética , Modelos Biológicos , Modelos Moleculares , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura
11.
Genetics ; 212(2): 509-522, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31018924

RESUMO

During mitosis, kinetochore-microtubule interactions ensure that chromosomes are accurately segregated to daughter cells. RSA-1 (regulator of spindle assembly-1) is a regulatory B″ subunit of protein phosphatase 2A that was previously proposed to modulate microtubule dynamics during spindle assembly. We have identified a genetic interaction between the centrosomal protein, RSA-1, and the spindle- and kinetochore-associated (Ska) complex in Caenorhabditis elegans In a forward genetic screen for suppressors of rsa-1(or598) embryonic lethality, we identified mutations in ska-1 and ska-3 Loss of SKA-1 and SKA-3, as well as components of the KMN (KNL-1/MIS-12/NDC-80) complex and the microtubule end-binding protein EBP-2, all suppressed the embryonic lethality of rsa-1(or598) These suppressors also disrupted the intracellular localization of the Ska complex, revealing a network of proteins that influence Ska function during mitosis. In rsa-1(or598) embryos, SKA-1 is excessively and prematurely recruited to kinetochores during spindle assembly, but SKA-1 levels return to normal just prior to anaphase onset. Loss of the TPX2 homolog, TPXL-1, also resulted in overrecruitment of SKA-1 to the kinetochores and this correlated with the loss of Aurora A kinase on the spindle microtubules. We propose that rsa-1 regulates the kinetochore localization of the Ska complex, with spindle-associated Aurora A acting as a potential mediator. These data reveal a novel mechanism of protein phosphatase 2A function during mitosis involving a centrosome-based regulatory mechanism for Ska complex recruitment to the kinetochore.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas Cromossômicas não Histona/genética , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Proteína Fosfatase 2/genética , Fuso Acromático/metabolismo , Anáfase/genética , Animais , Aurora Quinase A/metabolismo , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Centrossomo/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/genética , Cinesinas/metabolismo , Proteínas dos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose/genética , Proteína Fosfatase 2/metabolismo
12.
Curr Biol ; 28(18): 2991-2997.e2, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30197085

RESUMO

In oocytes of many organisms, meiotic spindles form in the absence of centrosomes [1-5]. Such female meiotic spindles have a pointed appearance in metaphase with microtubules focused at acentrosomal spindle poles. At anaphase, the microtubules of acentrosomal spindles then transition to an inter-chromosomal array, while the spindle poles disappear. This transition is currently not understood. Previous studies have focused on this inter-chromosomal microtubule array and proposed a pushing model to drive chromosome segregation [6, 7]. This model includes an end-on orientation of microtubules with chromosomes. Alternatively, chromosomes were thought to associate along bundles of microtubules [8, 9]. Starting with metaphase, this second model proposed a pure lateral chromosome-to-microtubule association up to the final meiotic stages of anaphase. Here, we applied large-scale electron tomography [10] of staged C. elegans oocytes in meiosis to analyze the orientation of microtubules in respect to chromosomes. We show that microtubules at metaphase I are primarily oriented laterally to the chromosomes and that microtubules switch to an end-on orientation during progression through anaphase. We further show that this switch in microtubule orientation involves a kinesin-13 microtubule depolymerase, KLP-7, which removes laterally associated microtubules around chromosomes. From this, we conclude that both lateral and end-on modes of microtubule-to-chromosome orientations are successively used in C. elegans oocytes to segregate meiotic chromosomes.


Assuntos
Caenorhabditis elegans/genética , Segregação de Cromossomos/genética , Meiose/genética , Microtúbulos/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Cinesinas/genética , Fuso Acromático/genética
13.
Mol Biol Cell ; 29(17): 2084-2097, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29949401

RESUMO

Protein phosphatase 2A (PP2A) is a heterotrimer composed of single catalytic and scaffolding subunits and one of several possible regulatory subunits. We identified PPTR-2, a regulatory subunit of PP2A, as a binding partner for the giant muscle protein UNC-89 (obscurin) in Caenorhabditis elegans. PPTR-2 is required for sarcomere organization when its paralogue, PPTR-1, is deficient. PPTR-2 localizes to the sarcomere at dense bodies and M-lines, colocalizing with UNC-89 at M-lines. PP2A components in C. elegans include one catalytic subunit LET-92, one scaffolding subunit (PAA-1), and five regulatory subunits (SUR-6, PPTR-1, PPTR-2, RSA-1, and CASH-1). In adult muscle, loss of function in any of these subunits results in sarcomere disorganization. rsa-1 mutants show an interesting phenotype: one of the two myosin heavy chains, MHC A, localizes as closely spaced double lines rather than single lines. This "double line" phenotype is found in rare missense mutants of the head domain of MHC B myosin, such as unc-54(s74). Analysis of phosphoproteins in the unc-54(s74) mutant revealed two additional phosphoserines in the nonhelical tailpiece of MHC A. Antibodies localize PPTR-1, PAA-1, and SUR-6 to I-bands and RSA-1 to M-lines and I-bands. Therefore, PP2A localizes to sarcomeres and functions in the assembly or maintenance of sarcomeres.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Músculo Estriado/enzimologia , Proteína Fosfatase 2/metabolismo , Sarcômeros/metabolismo , Animais , Mutação de Sentido Incorreto/genética , Fenótipo , Fosforilação , Ligação Proteica , Mapeamento de Interação de Proteínas , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/metabolismo , Técnicas do Sistema de Duplo-Híbrido
15.
Curr Biol ; 13(17): 1506-11, 2003 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-12956952

RESUMO

TACC (transforming acidic coiled-coil) proteins were first identified by their ability to transform cell lines [1], and links between human cancer and the overexpression of TACC proteins highlight the importance of understanding the biological function of this family of proteins. Herein, we describe the characterization of a new member of the TACC family of proteins in Caenorhabditis elegans, TAC-1. In other systems, TACC proteins associate with the XMAP215 family of microtubule-stabilizing proteins; however, it is unclear whether TACC proteins have microtubule-based functions distinct from XMAP215. We depleted both the XMAP215 ortholog ZYG-9 and TAC-1 via dsRNA-mediated interference (RNAi). We found that tac-1(RNAi) resulted in microtubule-based defects that were very similar to zyg-9(RNAi). Furthermore, TAC-1 and ZYG-9 are required for long astral microtubules in general and long spindle microtubules during spindle assembly. Loss of either protein did not affect the alpha-tubulin immunofluorescence intensity near centrosomes; this finding suggests that microtubule nucleation was not compromised. Both proteins localize to centrosomes and the kinetochore/microtubule region of chromosomes in metaphase and early anaphase. Furthermore, we found that ZYG-9 and TAC-1 physically interact in vivo, and this interaction is important for the efficient localization of the ZYG-9/TAC-1 complex to centrosomes.


Assuntos
Caenorhabditis elegans/embriologia , Centrossomo/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Animais , Western Blotting , Caenorhabditis elegans/metabolismo , Ciclo Celular/fisiologia , Imunofluorescência , Testes de Precipitina , Interferência de RNA
16.
Mol Biol Cell ; 15(1): 142-50, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14565976

RESUMO

The microtubule-severing protein complex katanin is required for a variety of important microtubule-base morphological changes in both animals and plants. Caenorhabditis elegans katanin is encoded by the mei-1 and mei-2 genes and is required for oocyte meiotic spindle formation and must be inactivated before the first mitotic cleavage. We identified a mutation, sb26, in the tbb-2 beta-tubulin gene that partially inhibits MEI-1/MEI-2 activity: sb26 rescues lethality caused by ectopic MEI-1/MEI-2 expression during mitosis, and sb26 increases meiotic defects in a genetic background where MEI-1/MEI-2 activity is lower than normal. sb26 does not interfere with MEI-1/MEI-2 microtubule localization, suggesting that this mutation likely interferes with severing. Tubulin deletion alleles and RNA-mediated interference revealed that TBB-2 and the other germline enriched beta-tubulin isotype, TBB-1, are redundant for embryonic viability. However, limiting MEI-1/MEI-2 activity in these experiments revealed that MEI-1/MEI-2 preferentially interacts with TBB-2-containing microtubules. Our results demonstrate that these two superficially redundant beta-tubulin isotypes have functionally distinct roles in vivo.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Embrião não Mamífero , Katanina , Microscopia de Fluorescência , Microtúbulos/metabolismo , Mutação , Isoformas de Proteínas/efeitos dos fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/farmacologia , Tubulina (Proteína)/efeitos dos fármacos , Tubulina (Proteína)/genética
17.
Genetics ; 204(4): 1461-1477, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27729423

RESUMO

In most animals, female meiosis completes only after fertilization. Sperm entry has been implicated in providing a signal for the initiation of the final meiotic processes; however, a maternal component required for this process has not been previously identified. We report the characterization of a novel family of three highly similar paralogs (memi-1, memi-2, memi-3) that encode oocyte-specific proteins. A hyper-morphic mutation memi-1(sb41) results in failure to exit female meiosis II properly; however, loss of all three paralogs results in a "skipped meiosis II" phenotype. Mutations that prevent fertilization, such as fer-1(hc1), also cause a skipped meiosis II phenotype, suggesting that the MEMI proteins represent a maternal component of a postfertilization signal that specifies the meiosis II program. MEMI proteins are degraded before mitosis and sensitive to ZYG-11, a substrate-specific adapter for cullin-based ubiquitin ligase activity, and the memi-1(sb41) mutation results in inappropriate persistence of the MEMI-1 protein into mitosis. Using an RNAi screen for suppressors of memi-1(sb41), we identified a sperm-specific PP1 phosphatase, GSP-3/4, as a putative sperm component of the MEMI pathway. We also found that MEMI and GSP-3/4 proteins can physically interact via co-immunoprecipitation. These results suggest that sperm-specific PP1 and maternal MEMI proteins act in the same pathway after fertilization to facilitate proper meiosis II and the transition into embryonic mitosis.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Fertilização/genética , Meiose/genética , Oócitos/metabolismo , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Feminino , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Oócitos/citologia , Ligação Proteica , Proteólise
18.
PLoS One ; 10(7): e0132593, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26168236

RESUMO

Regulation of microtubule dynamics is essential for many cellular processes, including proper assembly and function of the mitotic spindle. The kinesin-13 microtubule-depolymerizing enzymes provide one mechanism to regulate microtubule behaviour temporally and spatially. Vertebrate MCAK locates to chromatin, kinetochores, spindle poles, microtubule tips, and the cytoplasm, implying that the regulation of kinesin-13 activity and subcellular targeting is complex. Phosphorylation of kinesin-13 by Aurora kinase inhibits microtubule depolymerization activity and some Aurora phosphorylation sites on kinesin-13 are required for subcellular localization. Herein, we determine that a C. elegans deletion mutant klp-7(tm2143) causes meiotic and mitotic defects that are consistent with an increase in the amount of microtubules in the cytoplasmic and spindle regions of meiotic embryos, and an increase in microtubules emanating from centrosomes. We show that KLP-7 is phosphorylated by Aurora A and Aurora B kinases in vitro, and that the phosphorylation by Aurora A is stimulated by TPXL-1. Using a structure-function approach, we establish that one putative Aurora kinase site, S546, within the C-terminal part of the core domain is required for the function, but not subcellular localization, of KLP-7 in vivo. Furthermore, FRAP analysis reveals microtubule-dependent differences in the turnover of KLP-7(S546A) and KLP-7(S546E) mutant proteins at the centrosome, suggesting a possible mechanism for the regulation of KLP-7 by Aurora kinase.


Assuntos
Aurora Quinase A/metabolismo , Aurora Quinase B/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Centrossomo/fisiologia , Cinesinas/metabolismo , Microtúbulos/fisiologia , Animais , Sítios de Ligação , Caenorhabditis elegans/enzimologia , Proteínas de Caenorhabditis elegans/química , Cinesinas/química , Fosforilação
19.
Methods Mol Biol ; 1136: 103-16, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24633796

RESUMO

Microtubule plus-tip tracking is a powerful method to measure microtubule growth dynamics in vivo. Here we outline an approach that exploits live confocal microscopy of a GFP-tagged EB1-like protein to measure microtubule growth behavior and minus-end-directed microtubule motor activity at the cortex of Caenorhabditis elegans embryos. The EB1 velocity assay (EVA) provides a method to reproducibly monitor motor- and non-motor-assisted microtubule movements.


Assuntos
Caenorhabditis elegans/metabolismo , Embrião não Mamífero/metabolismo , Microtúbulos/metabolismo , Animais , Dineínas/metabolismo , Embrião não Mamífero/citologia , Expressão Gênica , Genes Reporter , Processamento de Imagem Assistida por Computador , Microscopia Confocal , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/metabolismo
20.
Genetics ; 196(1): 197-210, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24214341

RESUMO

Eukaryotic organisms use conserved checkpoint mechanisms that regulate Cdk1 by inhibitory phosphorylation to prevent mitosis from interfering with DNA replication or repair. In metazoans, this checkpoint mechanism is also used for coordinating mitosis with dynamic developmental processes. Inhibitory phosphorylation of Cdk1 is catalyzed by Wee1 kinases that phosphorylate tyrosine 15 (Y15) and dual-specificity Myt1 kinases found only in metazoans that phosphorylate Y15 and the adjacent threonine (T14) residue. Despite partially redundant roles in Cdk1 inhibitory phosphorylation, Wee1 and Myt1 serve specialized developmental functions that are not well understood. Here, we expressed wild-type and phospho-acceptor mutant Cdk1 proteins to investigate how biochemical differences in Cdk1 inhibitory phosphorylation influence Drosophila imaginal development. Phosphorylation of Cdk1 on Y15 appeared to be crucial for developmental and DNA damage-induced G2-phase checkpoint arrest, consistent with other evidence that Myt1 is the major Y15-directed Cdk1 inhibitory kinase at this stage of development. Expression of non-inhibitable Cdk1 also caused chromosome defects in larval neuroblasts that were not observed with Cdk1(Y15F) mutant proteins that were phosphorylated on T14, implicating Myt1 in a novel mechanism promoting genome stability. Collectively, these results suggest that dual inhibitory phosphorylation of Cdk1 by Myt1 serves at least two functions during development. Phosphorylation of Y15 is essential for the premitotic checkpoint mechanism, whereas T14 phosphorylation facilitates accumulation of dually inhibited Cdk1-Cyclin B complexes that can be rapidly activated once checkpoint-arrested G2-phase cells are ready for mitosis.


Assuntos
Proteína Quinase CDC2/metabolismo , Ciclina B/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/enzimologia , Drosophila/genética , Proteínas Quinases/metabolismo , Animais , Apoptose/genética , Proliferação de Células , Drosophila/embriologia , Olho/embriologia , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Instabilidade Genômica/genética , Mitose/genética , Índice Mitótico , Fosforilação , Asas de Animais/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA