Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 116(6): 1633-1651, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37659090

RESUMO

The final step in secretion is membrane fusion facilitated by SNARE proteins that reside in opposite membranes. The formation of a trans-SNARE complex between one R and three Q coiled-coiled SNARE domains drives the final approach of the membranes providing the mechanical energy for fusion. Biological control of this mechanism is exerted by additional domains within some SNAREs. For example, the N-terminal Longin domain (LD) of R-SNAREs (also called Vesicle-associated membrane proteins, VAMPs) can fold back onto the SNARE domain blocking interaction with other cognate SNAREs. The LD may also determine the subcellular localization via interaction with other trafficking-related proteins. Here, we provide cell-biological and genetic evidence that phosphorylation of the Tyrosine57 residue regulates the functionality of VAMP721. We found that an aspartate mutation mimics phosphorylation, leading to protein instability and subsequent degradation in lytic vacuoles. The mutant SNARE also fails to rescue the defects of vamp721vamp722 loss-of-function lines in spite of its wildtype-like localization within the secretory pathway and the ability to interact with cognate SNARE partners. Most importantly, it imposes a dominant negative phenotype interfering with root growth, normal secretion and cytokinesis in wildtype plants generating large aggregates that mainly contain secretory vesicles. Non-phosphorylatable VAMP721Y57F needs higher gene dosage to rescue double mutants in comparison to native VAMP721 underpinning that phosphorylation modulates SNARE function. We propose a model where short-lived phosphorylation of Y57 serves as a regulatory step to control VAMP721 activity, favoring its open state and interaction with cognate partners to ultimately drive membrane fusion.


Assuntos
Arabidopsis , Proteínas SNARE , Membrana Celular/metabolismo , Fusão de Membrana , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Tirosina/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo
2.
Plant Cell ; 32(8): 2491-2507, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32487565

RESUMO

Membrane trafficking maintains the organization of the eukaryotic cell and delivers cargo proteins to their subcellular destinations, such as sites of action or degradation. The formation of membrane vesicles requires the activation of the ADP-ribosylation factor ARF GTPase by the SEC7 domain of ARF guanine-nucleotide exchange factors (ARF-GEFs), resulting in the recruitment of coat proteins by GTP-bound ARFs. In vitro exchange assays were done with monomeric proteins, although ARF-GEFs form dimers in vivo. This feature is conserved across eukaryotes, although its biological significance is unknown. Here, we demonstrate the proximity of ARF1•GTPs in vivo by fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy, mediated through coordinated activation by dimers of Arabidopsis (Arabidopsis thaliana) ARF-GEF GNOM, which is involved in polar recycling of the auxin transporter PIN-FORMED1. Mutational disruption of ARF1 spacing interfered with ARF1-dependent trafficking but not with coat protein recruitment. A mutation impairing the interaction of one of the two SEC7 domains of the GNOM ARF-GEF dimer with its ARF1 substrate reduced the efficiency of coordinated ARF1 activation. Our results suggest a model of coordinated activation-dependent membrane insertion of ARF1•GTP molecules required for coated membrane vesicle formation. Considering the evolutionary conservation of ARFs and ARF-GEFs, this initial regulatory step of membrane trafficking might well occur in eukaryotes in general.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Multimerização Proteica , Fatores de Transcrição/metabolismo , Vesículas Transportadoras/metabolismo , Membrana Celular/metabolismo , Modelos Biológicos , Fenótipo , Plantas Geneticamente Modificadas , Ligação Proteica
3.
Proc Natl Acad Sci U S A ; 115(24): 6309-6314, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29844177

RESUMO

Sec1/Munc18 (SM) proteins contribute to membrane fusion by interacting with Qa-SNAREs or nascent trans-SNARE complexes. Gymnosperms and the basal angiosperm Amborella have only a single SEC1 gene related to the KEULE gene in Arabidopsis However, the genomes of most angiosperms including Arabidopsis encode three SEC1-related SM proteins of which only KEULE has been functionally characterized as interacting with the cytokinesis-specific Qa-SNARE KNOLLE during cell-plate formation. Here we analyze the closest paralog of KEULE named SEC1B. In contrast to the cytokinesis defects of keule mutants, sec1b mutants are homozygous viable. However, the keule sec1b double mutant was nearly gametophytically lethal, displaying collapsed pollen grains, which suggests substantial overlap between SEC1B and KEULE functions in secretion-dependent growth. SEC1B had a strong preference for interaction with the evolutionarily ancient Qa-SNARE SYP132 involved in secretion and cytokinesis, whereas KEULE interacted with both KNOLLE and SYP132. This differential interaction with Qa-SNAREs is likely conferred by domains 1 and 2a of the two SM proteins. Comparative analysis of all four possible combinations of the relevant SEC1 Qa-SNARE double mutants revealed that in cytokinesis, the interaction of SEC1B with KNOLLE plays no role, whereas the interaction of KEULE with KNOLLE is prevalent and functionally as important as the interactions of both SEC1B and KEU with SYP132 together. Our results suggest that functional diversification of the two SEC1-related SM proteins during angiosperm evolution resulted in enhanced interaction of SEC1B with Qa-SNARE SYP132, and thus a predominant role of SEC1B in secretion.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocinese/fisiologia , Fusão de Membrana/fisiologia , Transporte Proteico/fisiologia , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Proteínas Munc18/metabolismo , Proteínas Qa-SNARE/metabolismo
4.
PLoS Genet ; 14(11): e1007795, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30439956

RESUMO

In eukaryotes, GTP-bound ARF GTPases promote intracellular membrane traffic by mediating the recruitment of coat proteins, which in turn sort cargo proteins into the forming membrane vesicles. Mammals employ several classes of ARF GTPases which are activated by different ARF guanine-nucleotide exchange factors (ARF-GEFs). In contrast, flowering plants only encode evolutionarily conserved ARF1 GTPases (class I) but not the other classes II and III known from mammals, as suggested by phylogenetic analysis of ARF family members across the five major clades of eukaryotes. Instead, flowering plants express plant-specific putative ARF GTPases such as ARFA and ARFB, in addition to evolutionarily conserved ARF-LIKE (ARL) proteins. Here we show that all eight ARF-GEFs of Arabidopsis interact with the same ARF1 GTPase, whereas only a subset of post-Golgi ARF-GEFs also interacts with ARFA, as assayed by immunoprecipitation. Both ARF1 and ARFA were detected at the Golgi stacks and the trans-Golgi network (TGN) by both live-imaging with the confocal microscope and nano-gold labeling followed by EM analysis. ARFB representing another plant-specific putative ARF GTPase was detected at both the plasma membrane and the TGN. The activation-impaired form (T31N) of ARF1, but neither ARFA nor ARFB, interfered with development, although ARFA-T31N interfered, like ARF1-T31N, with the GDP-GTP exchange. Mutant plants lacking both ARFA and ARFB transcripts were viable, suggesting that ARF1 is sufficient for all essential trafficking pathways under laboratory conditions. Detailed imaging of molecular markers revealed that ARF1 mediated all known trafficking pathways whereas ARFA was not essential to any major pathway. In contrast, the hydrolysis-impaired form (Q71L) of both ARF1 and ARFA, but not ARFB, had deleterious effects on development and various trafficking pathways. However, the deleterious effects of ARFA-Q71L were abolished by ARFA-T31N inhibiting cognate ARF-GEFs, both in cis (ARFA-T31N,Q71L) and in trans (ARFA-T31N + ARFA-Q71L), suggesting indirect effects of ARFA-Q71L on ARF1-mediated trafficking. The deleterious effects of ARFA-Q71L were also suppressed by strong over-expression of ARF1, which was consistent with a subset of BIG1-4 ARF-GEFs interacting with both ARF1 and ARFA. Indeed, the SEC7 domain of BIG5 activated both ARF1 and ARFA whereas the SEC7 domain of BIG3 only activated ARF1. Furthermore, ARFA-T31N impaired root growth if ARF1-specific BIG3 was knocked out and only ARF1- and ARFA-activating BIG4 was functional. Activated ARF1 recruits different coat proteins to different endomembrane compartments, depending on its activation by different ARF-GEFs. Unlike ARF GTPases, ARF-GEFs not only localize at distinct compartments but also regulate specific trafficking pathways, suggesting that ARF-GEFs might play specific roles in traffic regulation beyond the activation of ARF1 by GDP-GTP exchange.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Estradiol/farmacologia , GTP Fosfo-Hidrolases/classificação , GTP Fosfo-Hidrolases/genética , Genoma de Planta , Fatores de Troca do Nucleotídeo Guanina/classificação , Fatores de Troca do Nucleotídeo Guanina/genética , Membranas Intracelulares/metabolismo , Modelos Biológicos , Filogenia , Plantas Geneticamente Modificadas , Transporte Proteico , Transdução de Sinais , Regulação para Cima/efeitos dos fármacos , Rede trans-Golgi/metabolismo
5.
Proc Natl Acad Sci U S A ; 114(8): E1544-E1553, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28096354

RESUMO

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins are key players in cellular trafficking and coordinate vital cellular processes, such as cytokinesis, pathogen defense, and ion transport regulation. With few exceptions, SNAREs are tail-anchored (TA) proteins, bearing a C-terminal hydrophobic domain that is essential for their membrane integration. Recently, the Guided Entry of Tail-anchored proteins (GET) pathway was described in mammalian and yeast cells that serve as a blueprint of TA protein insertion [Schuldiner M, et al. (2008) Cell 134(4):634-645; Stefanovic S, Hegde RS (2007) Cell 128(6):1147-1159]. This pathway consists of six proteins, with the cytosolic ATPase GET3 chaperoning the newly synthesized TA protein posttranslationally from the ribosome to the endoplasmic reticulum (ER) membrane. Structural and biochemical insights confirmed the potential of pathway components to facilitate membrane insertion, but the physiological significance in multicellular organisms remains to be resolved. Our phylogenetic analysis of 37 GET3 orthologs from 18 different species revealed the presence of two different GET3 clades. We identified and analyzed GET pathway components in Arabidopsis thaliana and found reduced root hair elongation in Atget lines, possibly as a result of reduced SNARE biogenesis. Overexpression of AtGET3a in a receptor knockout (KO) results in severe growth defects, suggesting presence of alternative insertion pathways while highlighting an intricate involvement for the GET pathway in cellular homeostasis of plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Membrana Celular/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Proteínas SNARE/metabolismo , Transdução de Sinais/fisiologia , Adenosina Trifosfatases/metabolismo , Animais , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Homeostase/fisiologia , Mamíferos/fisiologia , Fusão de Membrana/fisiologia , Chaperonas Moleculares/metabolismo , Filogenia , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas SNARE/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida
6.
Plant Cell ; 27(1): 189-201, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25627066

RESUMO

Phytochromes function as red/far-red photoreceptors in plants and are essential for light-regulated growth and development. Photomorphogenesis, the developmental program in light, is the default program in seed plants. In dark-grown seedlings, photomorphogenic growth is suppressed by the action of the CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)/SUPPRESSOR OF phyA-105 (SPA) complex, which targets positive regulators of photomorphogenic growth for degradation by the proteasome. Phytochromes inhibit the COP1/SPA complex, leading to the accumulation of transcription factors promoting photomorphogenesis; yet, the mechanism by which they inactivate COP1/SPA is still unknown. Here, we show that light-activated phytochrome A (phyA) and phytochrome B (phyB) interact with SPA1 and other SPA proteins. Fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy analyses show that SPAs and phytochromes colocalize and interact in nuclear bodies. Furthermore, light-activated phyA and phyB disrupt the interaction between COP1 and SPAs, resulting in reorganization of the COP1/SPA complex in planta. The light-induced stabilization of HFR1, a photomorphogenic factor targeted for degradation by COP1/SPA, correlates temporally with the accumulation of phyA in the nucleus and localization of phyA to nuclear bodies. Overall, these data provide a molecular mechanism for the inactivation of the COP1/SPA complex by phyA- and phyB-mediated light perception.


Assuntos
Arabidopsis/metabolismo , Fitocromo A/metabolismo , Fitocromo B/metabolismo , Proteínas de Arabidopsis/metabolismo , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica de Plantas , Ligação Proteica
7.
Mol Cell Proteomics ; 15(5): 1598-609, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26900162

RESUMO

Precisely knowing the stoichiometry of their components is critical for investigating structure, assembly, and function of macromolecular machines. This has remained a technical challenge in particular for large, hydrophobic membrane-spanning protein complexes. Here, we determined the stoichiometry of a type III secretion system of Salmonella enterica serovar Typhimurium using two complementary protocols of gentle complex purification combined with peptide concatenated standard and synthetic stable isotope-labeled peptide-based mass spectrometry. Bacterial type III secretion systems are cell envelope-spanning effector protein-delivery machines essential for colonization and survival of many Gram-negative pathogens and symbionts. The membrane-embedded core unit of these secretion systems, termed the needle complex, is composed of a base that anchors the machinery to the inner and outer membranes, a hollow filament formed by inner rod and needle subunits that serves as conduit for substrate proteins, and a membrane-embedded export apparatus facilitating substrate translocation. Structural analyses have revealed the stoichiometry of the components of the base, but the stoichiometry of the essential hydrophobic export apparatus components and of the inner rod protein remain unknown. Here, we provide evidence that the export apparatus of type III secretion systems contains five SpaP, one SpaQ, one SpaR, and one SpaS. We confirmed that the previously suggested stoichiometry of nine InvA is valid for assembled needle complexes and describe a loose association of InvA with other needle complex components that may reflect its function. Furthermore, we present evidence that not more than six PrgJ form the inner rod of the needle complex. Providing this structural information will facilitate efforts to obtain an atomic view of type III secretion systems and foster our understanding of the function of these and related flagellar machines. Given that other virulence-associated bacterial secretion systems are similar in their overall buildup and complexity, the presented approach may also enable their stoichiometry elucidation.


Assuntos
Peptídeos/química , Proteômica/métodos , Salmonella typhimurium/metabolismo , Sistemas de Secreção Tipo III/química , Marcação por Isótopo/métodos , Espectrometria de Massas , Modelos Moleculares , Multimerização Proteica , Salmonella typhimurium/química
8.
Nature ; 473(7347): 380-3, 2011 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-21593871

RESUMO

Polarized epithelia are fundamental to multicellular life. In animal epithelia, conserved junctional complexes establish membrane diffusion barriers, cellular adherence and sealing of the extracellular space. Plant cellular barriers are of independent evolutionary origin. The root endodermis strongly resembles a polarized epithelium and functions in nutrient uptake and stress resistance. Its defining features are the Casparian strips, belts of specialized cell wall material that generate an extracellular diffusion barrier. The mechanisms localizing Casparian strips are unknown. Here we identify and characterize a family of transmembrane proteins of previously unknown function. These 'CASPs' (Casparian strip membrane domain proteins) specifically mark a membrane domain that predicts the formation of Casparian strips. CASP1 displays numerous features required for a constituent of a plant junctional complex: it forms complexes with other CASPs; it becomes immobile upon localization; and it sediments like a large polymer. CASP double mutants display disorganized Casparian strips, demonstrating a role for CASPs in structuring and localizing this cell wall modification. To our knowledge, CASPs are the first molecular factors that are shown to establish a plasma membrane and extracellular diffusion barrier in plants, and represent a novel way of epithelial barrier formation in eukaryotes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/ultraestrutura , Biopolímeros/química , Biopolímeros/metabolismo , Difusão , Espaço Extracelular/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/genética , Proteínas de Membrana/ultraestrutura , Dados de Sequência Molecular , Família Multigênica , Ligação Proteica
9.
Nature ; 478(7369): 395-8, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21976020

RESUMO

Maize smut caused by the fungus Ustilago maydis is a widespread disease characterized by the development of large plant tumours. U. maydis is a biotrophic pathogen that requires living plant tissue for its development and establishes an intimate interaction zone between fungal hyphae and the plant plasma membrane. U. maydis actively suppresses plant defence responses by secreted protein effectors. Its effector repertoire comprises at least 386 genes mostly encoding proteins of unknown function and expressed exclusively during the biotrophic stage. The U. maydis secretome also contains about 150 proteins with probable roles in fungal nutrition, fungal cell wall modification and host penetration as well as proteins unlikely to act in the fungal-host interface like a chorismate mutase. Chorismate mutases are key enzymes of the shikimate pathway and catalyse the conversion of chorismate to prephenate, the precursor for tyrosine and phenylalanine synthesis. Root-knot nematodes inject a secreted chorismate mutase into plant cells likely to affect development. Here we show that the chorismate mutase Cmu1 secreted by U. maydis is a virulence factor. The enzyme is taken up by plant cells, can spread to neighbouring cells and changes the metabolic status of these cells through metabolic priming. Secreted chorismate mutases are found in many plant-associated microbes and might serve as general tools for host manipulation.


Assuntos
Corismato Mutase/metabolismo , Ustilago/enzimologia , Ustilago/patogenicidade , Fatores de Virulência/metabolismo , Zea mays/metabolismo , Zea mays/microbiologia , Citoplasma/enzimologia , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Interações Hospedeiro-Patógeno , Metaboloma , Modelos Biológicos , Proteínas de Plantas/metabolismo , Plastídeos/enzimologia , Multimerização Proteica , Saccharomyces cerevisiae/genética , Ácido Salicílico/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Fatores de Virulência/genética
10.
Plant Cell ; 25(6): 2217-35, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23771894

RESUMO

Many soluble proteins transit through the trans-Golgi network (TGN) and the prevacuolar compartment (PVC) en route to the vacuole, but our mechanistic understanding of this vectorial trafficking step in plants is limited. In particular, it is unknown whether clathrin-coated vesicles (CCVs) participate in this transport step. Through a screen for modified transport to the vacuole (mtv) mutants that secrete the vacuolar protein VAC2, we identified MTV1, which encodes an epsin N-terminal homology protein, and MTV4, which encodes the ADP ribosylation factor GTPase-activating protein nevershed/AGD5. MTV1 and NEV/AGD5 have overlapping expression patterns and interact genetically to transport vacuolar cargo and promote plant growth, but they have no apparent roles in protein secretion or endocytosis. MTV1 and NEV/AGD5 colocalize with clathrin at the TGN and are incorporated into CCVs. Importantly, mtv1 nev/agd5 double mutants show altered subcellular distribution of CCV cargo exported from the TGN. Moreover, MTV1 binds clathrin in vitro, and NEV/AGD5 associates in vivo with clathrin, directly linking these proteins to CCV formation. These results indicate that MTV1 and NEV/AGD5 are key effectors for CCV-mediated trafficking of vacuolar proteins from the TGN to the PVC in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Clatrina/metabolismo , Vacúolos/metabolismo , Rede trans-Golgi/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Proteínas Ativadoras de GTPase , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Immunoblotting , Meristema/genética , Meristema/metabolismo , Meristema/ultraestrutura , Microscopia Confocal , Microscopia Eletrônica , Dados de Sequência Molecular , Mutação , Filogenia , Plantas Geneticamente Modificadas , Ligação Proteica , Transporte Proteico/genética , Homologia de Sequência de Aminoácidos , Vacúolos/ultraestrutura
11.
Proc Natl Acad Sci U S A ; 110(25): 10318-23, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23733933

RESUMO

Adaptor protein (AP) complexes are the predominant coat proteins of membrane vesicles in post-Golgi trafficking of mammalian cells. Each AP complex contains a specific medium subunit, µ-adaptin, that selects cargo proteins bearing sequence-specific sorting motifs. Much less is known about the AP complexes and their µ subunits in plants. Because of uncertain homology, the µ-adaptins of Arabidopsis have been designated muA through muD [Happel et al. (2004) Plant J 37(5):678-693]. Furthermore, only muD has been assigned to a specific AP complex, AP-3, involved in Golgi-vacuolar trafficking [Niihama et al. (2009) Plant Cell Physiol 50(12):2057-2068, Zwiewka et al. (2011) Cell Res 21(12):1711-1722, and Wolfenstetter et al. (2012) Plant Cell 24(1):215-232]. In contrast, the µ subunit of neither the post-Golgi trafficking AP-1 complex nor the endocytic AP-2 complex has been identified. Here, we report the functional analysis of redundant AP-1 µ-adaptins AP1M1 (also known as muB1) and AP1M2 (also known as muB2). Coimmunoprecipitation revealed that both AP1M2 and its less strongly expressed isoform AP1M1 are complexed with the large subunit γ-adaptin of AP-1. In addition, AP1M2 was localized at or near the trans-Golgi network. Knockout mutations of AP1M2 impaired pollen function and arrested plant growth whereas the ap1m1 ap1m2 double mutant was nearly pollen-lethal. At the cellular level, the absence of AP1M2 entailed inhibition of multiple trafficking pathways from the trans-Golgi network to the vacuole and to the plasma membrane in interphase and to the plane of cell division in cytokinesis. Thus, AP-1 is crucial in post-Golgi trafficking in plant cells and required for cell division and plant growth.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Subunidades mu do Complexo de Proteínas Adaptadoras/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Transporte Proteico/fisiologia , Complexo 1 de Proteínas Adaptadoras/genética , Subunidades alfa do Complexo de Proteínas Adaptadoras/metabolismo , Subunidades gama do Complexo de Proteínas Adaptadoras/metabolismo , Subunidades mu do Complexo de Proteínas Adaptadoras/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Citocinese/fisiologia , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Interfase/fisiologia , Microscopia Eletrônica de Transmissão , Mutagênese Insercional , Vesículas Secretórias/metabolismo , Vesículas Secretórias/ultraestrutura , Vacúolos/metabolismo , Vacúolos/ultraestrutura , Rede trans-Golgi/metabolismo , Rede trans-Golgi/ultraestrutura
12.
EMBO J ; 30(11): 2246-54, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21505418

RESUMO

Conjugation is a major route of horizontal gene transfer, the driving force in the evolution of bacterial genomes. Antibiotic producing soil bacteria of the genus Streptomyces transfer DNA in a unique process involving a single plasmid-encoded protein TraB and a double-stranded DNA molecule. However, the molecular function of TraB in directing DNA transfer from a donor into a recipient cell is unknown. Here, we show that TraB constitutes a novel conjugation system that is clearly distinguished from DNA transfer by a type IV secretion system. We demonstrate that TraB specifically recognizes and binds to repeated 8 bp motifs on the conjugative plasmid. The specific DNA recognition is mediated by helix α3 of the C-terminal winged-helix-turn-helix domain of TraB. We show that TraB assembles to a hexameric ring structure with a central ∼3.1 nm channel and forms pores in lipid bilayers. Structure, sequence similarity and DNA binding characteristics of TraB indicate that TraB is derived from an FtsK-like ancestor protein, suggesting that Streptomyces adapted the FtsK/SpoIIIE chromosome segregation system to transfer DNA between two distinct Streptomyces cells.


Assuntos
Proteínas de Bactérias/metabolismo , Conjugação Genética , Transferência Genética Horizontal , Plasmídeos , Streptomyces coelicolor/genética , Sítios de Ligação , Segregação de Cromossomos , Cromossomos Bacterianos/genética , DNA/metabolismo , DNA Bacteriano/metabolismo , Evolução Molecular , Filogenia , Ligação Proteica , Multimerização Proteica , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
13.
J Cell Sci ; 126(Pt 14): 3223-33, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23641073

RESUMO

Polo-like kinase 4 (Plk4) is a key regulator of centriole duplication, but the mechanism underlying its recruitment to mammalian centrioles is not understood. In flies, Plk4 recruitment depends on Asterless, whereas nematodes rely on a distinct protein, Spd-2. Here, we have explored the roles of two homologous mammalian proteins, Cep152 and Cep192, in the centriole recruitment of human Plk4. We demonstrate that Cep192 plays a key role in centrosome recruitment of both Cep152 and Plk4. Double-depletion of Cep192 and Cep152 completely abolishes Plk4 binding to centrioles as well as centriole duplication, indicating that the two proteins cooperate. Most importantly, we show that Cep192 binds Plk4 through an N-terminal extension that is specific to the largest isoform. The Plk4 binding regions of Cep192 and Cep152 (residues 190-240 and 1-46, respectively) are rich in negatively charged amino acids, suggesting that Plk4 localization to centrioles depends on electrostatic interactions with the positively charged polo-box domain. We conclude that cooperation between Cep192 and Cep152 is crucial for centriole recruitment of Plk4 and centriole duplication during the cell cycle.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centríolos/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Drosophila , Proteínas de Drosophila/genética , Células HEK293 , Células HeLa , Humanos , Nematoides , Ligação Proteica/genética , Isoformas de Proteínas/genética , RNA Interferente Pequeno/genética
14.
Nature ; 459(7250): 1136-40, 2009 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-19506555

RESUMO

The plant signalling molecule auxin provides positional information in a variety of developmental processes by means of its differential distribution (gradients) within plant tissues. Thus, cellular auxin levels often determine the developmental output of auxin signalling. Conceptually, transmembrane transport and metabolic processes regulate the steady-state levels of auxin in any given cell. In particular, PIN auxin-efflux-carrier-mediated, directional transport between cells is crucial for generating auxin gradients. Here we show that Arabidopsis thaliana PIN5, an atypical member of the PIN gene family, encodes a functional auxin transporter that is required for auxin-mediated development. PIN5 does not have a direct role in cell-to-cell transport but regulates intracellular auxin homeostasis and metabolism. PIN5 localizes, unlike other characterized plasma membrane PIN proteins, to endoplasmic reticulum (ER), presumably mediating auxin flow from the cytosol to the lumen of the ER. The ER localization of other PIN5-like transporters (including the moss PIN) indicates that the diversification of PIN protein functions in mediating auxin homeostasis at the ER, and cell-to-cell auxin transport at the plasma membrane, represent an ancient event during the evolution of land plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Retículo Endoplasmático/metabolismo , Homeostase/fisiologia , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Arabidopsis/classificação , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Células Cultivadas , Técnicas de Inativação de Genes , Proteínas de Membrana Transportadoras/genética , Mutação , Fenótipo , Filogenia , Reguladores de Crescimento de Plantas/metabolismo
15.
Plant J ; 74(5): 781-91, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23451828

RESUMO

The microtubule (MT)-associated putative kinase RUNKEL (RUK) is an important component of the phragmoplast machinery involved in cell plate formation in Arabidopsis somatic cytokinesis. Since loss-of-function ruk mutants display seedling lethality, it was previously not known whether RUK functions in mature sporophytes or during gametophyte development. In this study we utilized RUK proteins that lack the N-terminal kinase domain to further examine biological processes related to RUK function. Truncated RUK proteins when expressed in wild-type Arabidopsis plants cause cellularization defects not only in seedlings and adult tissues but also during male meiocyte development, resulting in abnormal pollen and reduced fertility. Ultrastructural analysis of male tetrads revealed irregular and incomplete or absent intersporal cell walls, caused by disorganized radial MT arrays. Moreover, in ruk mutants endosperm cellularization defects were also caused by disorganized radial MT arrays. Intriguingly, in seedlings expressing truncated RUK proteins, the kinesin HINKEL, which is required for the activation of a mitogen-activated protein kinase signaling pathway regulating phragmoplast expansion, was mislocalized. Together, these observations support a common role for RUK in both phragmoplast-based cytokinesis in somatic cells and syncytial cytokinesis in reproductive cells.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Citocinese/genética , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Endosperma/genética , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Microscopia Eletrônica , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Plantas Geneticamente Modificadas , Pólen/genética , Pólen/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
J Cell Sci ; 125(Pt 5): 1342-52, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22349698

RESUMO

Control of centriole number is crucial for genome stability and ciliogenesis. Here, we characterize the role of human STIL, a protein that displays distant sequence similarity to the centriole duplication factors Ana2 in Drosophila and SAS-5 in Caenorhabditis elegans. Using RNA interference, we show that STIL is required for centriole duplication in human cells. Conversely, overexpression of STIL triggers the near-simultaneous formation of multiple daughter centrioles surrounding each mother, which is highly reminiscent of the phenotype produced by overexpression of the polo-like kinase PLK4 or the spindle assembly abnormal protein 6 homolog (SAS-6). We further show, by fluorescence and immunoelectron microscopy, that STIL is recruited to nascent daughter centrioles at the onset of centriole duplication and degraded, in an APC/C(Cdc20-Cdh1)-dependent manner, upon passage through mitosis. We did not detect a stable complex between STIL and SAS-6, but the two proteins resemble each other with regard to both localization and cell cycle control of expression. Thus, STIL cooperates with SAS-6 and PLK4 in the control of centriole number and represents a key centriole duplication factor in human cells.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Divisão Celular/fisiologia , Centríolos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sequência de Aminoácidos , Antígenos CD , Caderinas/genética , Proteínas Cdc20 , Ciclo Celular/fisiologia , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/genética , Linhagem Celular , Centríolos/genética , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/genética , Interferência de RNA , RNA Interferente Pequeno , Alinhamento de Sequência
17.
Appl Environ Microbiol ; 80(3): 1051-61, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24271182

RESUMO

Microorganisms have been observed to oxidize Fe(II) at neutral pH under anoxic and microoxic conditions. While most of the mixotrophic nitrate-reducing Fe(II)-oxidizing bacteria become encrusted with Fe(III)-rich minerals, photoautotrophic and microaerophilic Fe(II) oxidizers avoid cell encrustation. The Fe(II) oxidation mechanisms and the reasons for encrustation remain largely unresolved. Here we used cultivation-based methods and electron microscopy to compare two previously described nitrate-reducing Fe(II) oxidizers ( Acidovorax sp. strain BoFeN1 and Pseudogulbenkiania sp. strain 2002) and two heterotrophic nitrate reducers (Paracoccus denitrificans ATCC 19367 and P. denitrificans Pd 1222). All four strains oxidized ∼8 mM Fe(II) within 5 days in the presence of 5 mM acetate and accumulated nitrite (maximum concentrations of 0.8 to 1.0 mM) in the culture media. Iron(III) minerals, mainly goethite, formed and precipitated extracellularly in close proximity to the cell surface. Interestingly, mineral formation was also observed within the periplasm and cytoplasm; intracellular mineralization is expected to be physiologically disadvantageous, yet acetate consumption continued to be observed even at an advanced stage of Fe(II) oxidation. Extracellular polymeric substances (EPS) were detected by lectin staining with fluorescence microscopy, particularly in the presence of Fe(II), suggesting that EPS production is a response to Fe(II) toxicity or a strategy to decrease encrustation. Based on the data presented here, we propose a nitrite-driven, indirect mechanism of cell encrustation whereby nitrite forms during heterotrophic denitrification and abiotically oxidizes Fe(II). This work adds to the known assemblage of Fe(II)-oxidizing bacteria in nature and complicates our ability to delineate microbial Fe(II) oxidation in ancient microbes preserved as fossils in the geological record.


Assuntos
Betaproteobacteria/metabolismo , Comamonadaceae/metabolismo , Desnitrificação , Compostos Ferrosos/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Acetatos/metabolismo , Anaerobiose , Betaproteobacteria/crescimento & desenvolvimento , Betaproteobacteria/ultraestrutura , Comamonadaceae/crescimento & desenvolvimento , Comamonadaceae/ultraestrutura , Microscopia Eletrônica , Minerais/metabolismo , Oxirredução , Periplasma/metabolismo
19.
J Cell Sci ; 124(Pt 10): 1644-54, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21525033

RESUMO

Peritoneal carcinomatosis is an advanced form of metastatic disease characterized by cancer cell dissemination onto the peritoneum. It is commonly observed in ovarian and colorectal cancers and is associated with poor patient survival. Novel therapies consist of cytoreductive surgery in combination with intraperitoneal chemotherapy, aiming at tumor cell death induction. The resulting dying tumor cells are considered to be eliminated by professional as well as semi-professional phagocytes. In the present study, we have identified a hitherto unknown type of 'amateur' phagocyte in this environment: human peritoneal mesothelial cells (HMCs). We demonstrate that HMCs engulf corpses of dying ovarian and colorectal cancer cells, as well as other types of apoptotic cells. Flow cytometric, confocal and electron microscopical analyses revealed that HMCs ingest dying cell fragments in a dose- and time-dependent manner and the internalized material subsequently traffics into late phagolysosomes. Regarding the mechanisms of prey cell recognition, our results show that HMCs engulf apoptotic corpses in a serum-dependent and -independent fashion and quantitative real-time PCR (qRT-PCR) analyses revealed that diverse opsonin receptor systems orchestrating dying cell clearance are expressed in HMCs at high levels. Our data strongly suggest that HMCs contribute to dying cell removal in the peritoneum, and future studies will elucidate in what manner this influences tumor cell dissemination and the antitumor immune response.


Assuntos
Carcinoma/patologia , Neoplasias Colorretais/patologia , Células Epiteliais/patologia , Neoplasias Ovarianas/patologia , Neoplasias Peritoneais/patologia , Peritônio/patologia , Fagocitose/fisiologia , Apoptose/fisiologia , Células CACO-2 , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Células HT29 , Humanos , Microscopia Confocal , Neoplasias Peritoneais/secundário , Microambiente Tumoral
20.
Plant Cell ; 22(6): 1826-37, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20543027

RESUMO

Ubiquitination, deubiquitination, and the formation of specific ubiquitin chain topologies have been implicated in various cellular processes. Little is known, however, about the role of ubiquitin in the development of cellular organelles. Here, we identify and characterize the deubiquitinating enzyme AMSH3 from Arabidopsis thaliana. AMSH3 hydrolyzes K48- and K63-linked ubiquitin chains in vitro and accumulates both ubiquitin chain types in vivo. amsh3 mutants fail to form a central lytic vacuole, accumulate autophagosomes, and mis-sort vacuolar protein cargo to the intercellular space. Furthermore, AMSH3 is required for efficient endocytosis of the styryl dye FM4-64 and the auxin efflux facilitator PIN2. We thus present evidence for a role of deubiquitination in intracellular trafficking and vacuole biogenesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Ubiquitina Tiolesterase/metabolismo , Vacúolos/enzimologia , Clonagem Molecular , Endocitose , Mutação , Transporte Proteico , Ubiquitina/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA