Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 118(24): 247402, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28665653

RESUMO

We experimentally explore the dynamical optical hysteresis of a semiconductor microcavity as a function of the sweep time. The hysteresis area exhibits a double power law decay due to the influence of fluctuations, which trigger switching between metastable states. Upon increasing the average photon number and approaching the thermodynamic limit, the double power law evolves into a single power law. This algebraic behavior characterizes a dissipative phase transition. Our findings are in good agreement with theoretical predictions for a single mode resonator influenced by quantum fluctuations, and the present experimental approach is promising for exploring critical phenomena in photonic lattices.

2.
Phys Rev Lett ; 115(8): 080604, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26340174

RESUMO

We present a theoretical method to study driven-dissipative correlated quantum systems on lattices with two spatial dimensions (2D). The steady-state density matrix of the lattice is obtained by solving the master equation in a corner of the Hilbert space. The states spanning the corner space are determined through an iterative procedure, using eigenvectors of the density matrix of smaller lattice systems, merging in real space two lattices at each iteration and selecting M pairs of states by maximizing their joint probability. The accuracy of the results is then improved by increasing the dimension M of the corner space until convergence is reached. We demonstrate the efficiency of such an approach by applying it to the driven-dissipative 2D Bose-Hubbard model, describing lattices of coupled cavities with quantum optical nonlinearities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA