RESUMO
ConspectusThe emulation of ingenious biofunctions has been a research focus for several decades. Metal-organic cages (MOCs), as a type of discrete supramolecular assembly with well-defined shapes and cavities, have aroused great interest in chemists to imitate natural protein cages or enzymes. However, to genuinely achieve tailored functionalities or reactivities of enzymes, the design of cage structures combining both the confined microenvironment and the active site is a prerequisite. Therefore, the integration of functionalized motifs into MOCs is expected to provide a feasible approach to construct biofunctional confined nanospaces, which not only allows the modulation of cage properties for applications such as molecular recognition, transport, and catalysis but also creates unique microenvironments that promote enzymatic effects for special reactivities and selectivities, thereby providing a versatile platform to achieve exceptional biomimetic functions and beyond.In this Account, we specifically focus on our research toward engineering active confined-nanospaces in MOCs via incorporation of M(ImPhen)3 metalloligands, a typical tris-chelate coordination moiety comprising imidazophenanthroline ligands and variable metal ions, as the principle functional units for stepwise assembly of active-MOCs. Starting from their structure design and merits, we describe the versatility of M(ImPhen)3 centers for multifunctionalization of the confined cage-nanospaces. By integrating different metal ions like Ru, Os, Fe, Co, Ni, Zn, the metal ion inherent properties, e.g., redox activity of Fe/Co-centers, chirality, and photoactivity of Ru-centers, and dynamics of Co/Zn-centers, could be integrated and tailored on the cages as isostructural nanosized containers or reactors. Changing the Pd or Pt cage vertices to organic clips could remarkably enhance acid-base stability and endow cages with flexibility and allostery. Utilization of ImPhen organic ligands containing imidazole groups introduces proton transfer capability, which can couple with the high-positive charges on the cage to create amphoteric microenvironments in the porous open-cage solution. Moreover, the nonplanar stereoconfiguration of M(ImPhen)3 confers multiple peripheral pockets on the cage, which render multisite, high-order, and dynamics guest binding for the benefit of applications such as drug delivery, molecular separation, and catalytic turnover.The construction of active-MOCs from tailorable M(ImPhen)3 metalloligands provides us with a new perspective on their structural design and functionalities. Merging the cage confinement with distinct physicochemical properties on a supramolecular level makes it practical to realize synergistic and cooperative effects for functionality enhancement beyond molecular components or the reactivity different from the bulky solution, which could largely expand the potential of MOCs as a multirole platform to wide application scenarios such as artificial photosynthesis, unconventional catalysis, and theranostic nanomedicine.
RESUMO
Achieving high guest loading and multiguest-binding capacity holds crucial significance for advancement in separation, catalysis, and drug delivery with synthetic receptors; however, it remains a challenging bottleneck in characterization of high-stoichiometry guest-binding events. Herein, we describe a large-sized coordination cage (MOC-70-Zn8Pd6) possessing 12 peripheral pockets capable of accommodating multiple guests and a high-resolution electrospray ionization mass spectrometry (HR-ESI-MS)-based method to understand the solution host-guest chemistry. A diverse range of bulky guests, varying from drug molecules to rigid fullerenes as well as flexible host molecules of crown ethers and calixarenes, could be loaded into open pockets with high capacities. Notably, these hollow cage pockets provide multisites to capture different guests, showing heteroguest coloading behavior to capture binary, ternary, or even quaternary guests. Moreover, a pair of commercially applied drugs for the combination therapy of chronic lymphocytic leukemia (CLL) has been tested, highlighting its potential in multidrug delivery for combined treatment.
Assuntos
Espectrometria de Massas por Ionização por Electrospray , Éteres de Coroa/química , Calixarenos/química , Paládio/química , Zinco/química , Fulerenos/química , Estrutura MolecularRESUMO
The structural dynamics of artificial assemblies, in aspects such as molecular recognition and structural transformation, provide us with a blueprint to achieve bioinspired applications. Here, we describe the assembly of redox-switchable chiral metal-organic cages Λ8/Δ8-[Pd6(CoIIL3)8]28+ and Λ8/Δ8-[Pd6(CoIIIL3)8]36+. These isomeric cages demonstrate an on-off chirality logic gate controlled by their chemical and stereostructural dynamics tunable through redox transitions between the labile CoII-state and static CoIII-state with a distinct Cotton effect. The transition between different states is enabled by a reversible redox process and chiral recognition originating in the tris-chelate Co-centers. All cages in two states are thoroughly characterized by NMR, ESI-MS, CV, CD, and X-ray crystallographic analysis, which clarify their redox-switching behaviors upon chemical reduction/oxidation. The stereochemical lability of the CoII-center endows the Λ8/Δ8-CoII-cages with efficient chiral-induction by enantiomeric guests, leading to enantiomeric isomerization to switch between Λ8/Δ8-CoII-cages, which can be stabilized by oxidation to their chemically inert forms of Λ8/Δ8-CoIII-cages. Kinetic studies reveal that the isomerization rate of the Δ8-CoIII-cage is at least an order of magnitude slower than that of the Δ8-CoII-cage even at an elevated temperature, while its activation energy is 16 kcal mol-1 higher than that of the CoII-cage.
RESUMO
The core features of covalent organic frameworks (COFs) are crystallinity and porosity. However, the synthesis of single-crystal COFs with monomers of diverse reactivity and adjustment of their pore structures remain challenging. Here, we show that linkers that can react with a node to form single-crystal COFs can guide other linkers that form either COFs or amorphous polymers with the node to gain single-crystal COFs with mixed components, which are homogeneous on the unit cell scale with controlled ratios. With the linker-guided crystal growth method, we created nine types of single-crystal COFs with up to nine different components, which are more complex than any known crystal. The structure of the crystal adapted approximately to that of the main component, and its pore volume could be expanded up to 8.8%. Different components lead to complex and diverse pore structures and offer the possibilities to gain positive synergies, as exemplified by a bicomponent COF with 2200 and 733% SO2 uptake capacity of that of the two pure-component counterparts at 298 K and 0.002 bar. The selectivity for separation of SO2/CO2 ranges from 1230 to 4247 for flue gas based on ideal adsorbed solution theory, recording porous crystals. The bicomponent COF also exhibits a 1300% retention time of its pure-component counterparts for SO2 in a dynamic column breakthrough experiment for deep desulfurization.
RESUMO
Atherosclerosis (AS) is a common cause of coronary heart disease and stroke. The delivery of exogenous H2S and in situ production of O2 within atherosclerotic plaques can help suppress inflammatory cell infiltration and alleviate disease progression. However, the uncontrolled release of gas donors hinders achieving effective drug concentrations and causes toxic effects. Herein, diallyl trisulfide (DATS)-loaded metal-organic cage (MOC)-68-doped MnO2 nanoparticles are developed as a microenvironment-responsive nanodrug with the capacity for the in situ co-delivery of H2S and O2 to inflammatory cells within plaques. This nanomedicine exhibited excellent monodispersity and stability and protected DATS from degradation in the circulation. In vitro studies showed that the nanomedicine reduced macrophage polarization toward an inflammatory phenotype and inhibited the formation of foam cells, while suppressing the expression of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and interleukin-1ß. In a mouse model of ApoE-/- genotype, the nanomedicine reduces the plaque burden, inflammatory infiltration, and hypoxic conditions within the plaques. Furthermore, the treatment process and therapeutic effects can be monitored by magnetic resonance image (MRI), in real time upon Mn2+ release from the acidic- and H2O2- microenvironment-responsive MnO2 nanoparticles. The DATS-loaded MOC-68-doped MnO2-based nanodrug holds great promise as a novel theranostic platform for AS.
Assuntos
Aterosclerose , Compostos de Manganês , Nanomedicina , Óxidos , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Nanomedicina/métodos , Camundongos , Óxidos/química , Compostos de Manganês/química , Sulfeto de Hidrogênio/química , Sulfeto de Hidrogênio/farmacologia , Nanopartículas/química , Gases/química , Células RAW 264.7 , Oxigênio/química , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacosRESUMO
Nitric oxide (NO), a key element in the regulation of essential biological mechanisms, presents huge potential as therapeutic agent in the treatment and prevention of chronic diseases. Metal-organic frameworks (MOFs) with open metal sites are promising carriers for NO therapies but delivering it over an extended period in biological media remains a great challenge due to i) a fast degradation of the material in body fluids and/or ii) a rapid replacement of NO by water molecules onto the Lewis acid sites. Here, a new ultra-narrow pores Fe bisphosphonate MOF, denoted MIP-210(Fe) or Fe(H2O)(Hmbpa) (H4mbpa = p-xylenediphosphonic acid) is described that adsorbs NO due to an unprecedented sorption mechanism: coordination of NO through the Fe(III) sites is unusually preferred, replacing bound water, and creating a stable interaction with the free H2O and P-OH groups delimiting the ultra-narrow pores. This, associated with the high chemical stability of the MOF in body fluids, enables an unprecedented slow replacement of NO by water molecules in biological media, achieving an extraordinarily extended NO delivery time over at least 70 h, exceeding by far the NO kinetics release reported with others porous materials, paving the way for the development of safe and successful gas therapies.
RESUMO
The self-assembled metal-organic cages (MOCs) have been evolved as a paradigm of enzyme-mimic catalysts since they are able to synergize multifunctionalities inherent in metal and organic components and constitute microenvironments characteristic of enzymatic spatial confinement and versatile host-guest interactions, thus facilitating unconventional organic transformations via unique driving-forces such as weak noncovalent binding and electron/energy transfer. Recently, MOC-based photoreactors emerged as a burgeoning platform of supramolecular photocatalysis, displaying anomalous reactivities and selectivities distinct from bulk solution. This perspective recaps two decades journey of the photoinduced radical reactions by using photoactive metal-organic cages (PMOCs) as artificial reactors, outlining how the cage-confined photocatalysis was evolved from stoichiometric photoreactions to photocatalytic turnover, from high-energy UV-irradiation to sustainable visible-light photoactivation, and from simple radical reactions to multi-level chemo- and stereoselectivities. We will focus on PMOCs that merge structural and functional biomimicry into a single-cage to behave as multi-role photoreactors, emphasizing their potentials in tackling current challenges in organic transformations through single-electron transfer (SET) or energy transfer (EnT) pathways in a simple, green while feasible manner.
RESUMO
Afterglow materials have garnered significant interest due to distinct photophysical characteristics. However, it is still difficult to achieve long afterglow phosphorescence from organic molecules due to aggregation-caused quenching (ACQ) and energy dissipation. In addition, most materials reported so far have long afterglow emission only at room or even low temperatures, and mainly use UV light as an excitation source. In this work, we report a strategy to achieve high temperature long afterglow emission through the assembly of isolated 0D metal-organic cages (MOCs). In which, both ACQ and phosphorescence quenching effects are effectively mitigated by altering the stacking mode of organic chromophores through orthogonally anchoring into the edges of cubic MOCs. Furthermore, improvement in molecular rigidity, promotion of spin-orbit coupling and broadening of the absorption range are achieved through the MOC- engineering strategy. As a result, we successfully synthesized MOCs that can produce afterglow emission even after excitation by WLEDs at high temperatures (380 K). Moreover, the MOCs are capable of generating afterglow emissions when excited by mobile phone flashlight at room temperature. Given these features, the potential applications of MOCs in the visual identification of explosives, information encryption and multicolor display are explored.
RESUMO
A series of isostructural supramolecular cages with a rhombic dodecahedron shape have been assembled with distinct metal-coordination lability (M8 Pd6 -MOC-16, M=Ru2+ , Fe2+ , Ni2+ , Zn2+ ). The chirality transfer between metal centers generally imposes homochirality on individual cages to enable solvent-dependent spontaneous resolution of Δ8 /Λ8 -M8 Pd6 enantiomers; however, their distinguishable stereochemical dynamics manifests differential chiral phenomena governed by the cage stability following the order Ru8 Pd6 >Ni8 Pd6 >Fe8 Pd6 >Zn8 Pd6 . The highly labile Zn centers endow the Zn8 Pd6 cage with conformational flexibility and deformation, enabling intrigue chiral-Δ8 /Λ8 -Zn8 Pd6 to meso-Δ4 Λ4 -Zn8 Pd6 transition induced by anions. The cage stabilization effect differs from inert Ru2+ , metastable Fe2+ /Ni2+ , and labile Zn2+ , resulting in different chiral-guest induction. Strikingly, solvent-mediated host-guest interactions have been revealed for Δ8 /Λ8 -(Ru/Ni/Fe)8 Pd6 cages to discriminate the chiral recognition of the guests with opposite chirality. These results demonstrate a versatile procedure to control the stereochemistry of metal-organic cages based on the dynamic metal centers, thus providing guidance to maneuver cage chirality at a supramolecular level by virtue of the solvent, anion, and guest to benefit practical applications.
RESUMO
How to achieve CO2 electroreduction in high efficiency is a current challenge with the mechanism not well understood yet. The metal-organic cages with multiple metal sites, tunable active centers, and well-defined microenvironments may provide a promising catalyst model. Here, we report self-assembly of Ag4L4 type cuboctahedral cages from coordination dynamic Ag+ ion and triangular imidazolyl ligand 1,3,5-tris(1-benzylbenzimidazol-2-yl) benzene (Ag-MOC-X, X=NO3, ClO4, BF4) via anion template effect. Notably, Ag-MOC-NO3 achieves the highest CO faradaic efficiency in pH-universal electrolytes of 86.1 % (acidic), 94.1 % (neutral) and 95.3 % (alkaline), much higher than those of Ag-MOC-ClO4 and Ag-MOC-BF4 with just different counter anions. In situ attenuated total reflection Fourier transform infrared spectroscopy observes formation of vital intermediate *COOH for CO2-to-CO conversion. The density functional theory calculations suggest that the adsorption of CO2 on unsaturated Ag-site is stabilized by C-Hâ â â O hydrogen-bonding of CO2 in a microenvironment surrounded by three benzimidazole rings, and the activation of CO2 is dependent on the coordination dynamics of Ag-centers modulated by the hosted anions through Agâ â â X interactions. This work offers a supramolecular electrocatalytic strategy based on Ag-coordination geometry and host-guest interaction regulation of MOCs as high-efficient electrocatalysts for CO2 reduction to CO which is a key intermediate in chemical industry process.
RESUMO
Deep SO2 removal and recovery as industrial feedstock are of importance in flue-gas desulfurization and natural-gas purification, yet developing low-cost and scalable physisorbents with high efficiency and recyclability remains a challenge. Herein, we develop a viable synthetic protocol to produce DUT-67 with a controllable MOF structure, excellent crystallinity, adjustable shape/size, milli-to-kilogram scale, and consecutive production by recycling the solvent/modulator. Furthermore, simple HCl post-treatment affords depurated DUT-67-HCl featuring ultrahigh purity, excellent chemical stability, fully reversible SO2 uptake, high separation selectivity (SO2/CO2 and SO2/N2), greatly enhanced SO2 capture capacity, and good reusability. The SO2 binding mechanism has been elucidated by in situ X-ray diffraction/infrared spectroscopy and DFT/GCMC calculations. The single-step SO2 separation from a real quaternary N2/CO2/O2/SO2 flue gas containing trace SO2 is implementable under dry and 50% humid conditions, thus recovering 96% purity. This work may pave the way for future SO2 capture-and-recovery technology by pushing MOF syntheses toward economic cost, scale-up production, and improved physiochemical properties.
RESUMO
Molecular recognition lies at the heart of biological functions, which inspires lasting research in artificial host syntheses to mimic biomolecules that can recognize, process, and transport molecules with the highest level of complexity; nonetheless, the design principle and quantifying methodology of artificial hosts for multiple guests (≥4) remain a formidable task. Herein, we report two rhombic dodecahedral cages [(Zn/Fe)8Pd6-MOC-16], which embrace 12 adaptive pockets for multiguest binding with distinct conformational dynamics inherent in metal-center lability and are able to capture 4-24 guests to manifest a surprising complexity of binding scenarios. The exceptional high-order and hierarchical encapsulation phenomena suggest a wide host-guest dynamic-fit, enabling conformational adjustment and adaptation beyond the duality of induced-fit and conformational selection in protein interactions. A critical inspection of the host-guest binding events in solution has been performed by NMR and ESI-MS spectra, highlighting the importance of acquiring a reliable binding repertoire from different techniques and the uncertainty of quantifying the binding affinities of multiplying guests by an oversimplified method.
Assuntos
Biomimética , Conformação MolecularRESUMO
The large-scale hydrogen production and application through electrocatalytic water splitting depends crucially on the development of highly efficient, cost-effective electrocatalysts for oxygen evolution reaction (OER), which, however, remains challenging. Here, a new electrocatalyst of trimetallic Fe-Co-Ni hydroxide (denoted as FeCoNiOx Hy ) with a nanotubular structure is developed through an enhanced Kirkendall process under applied potential. The FeCoNiOx Hy features synergistic electronic interaction between Fe, Co, and Ni, which not only notably increases the intrinsic OER activity of FeCoNiOx Hy by facilitating the formation of *OOH intermediate, but also substantially improves the intrinsic conductivity of FeCoNiOx Hy to facilitate charge transfer and activate catalytic sites through electrocatalyst by promoting the formation of abundant Co3+ . Therefore, FeCoNiOx Hy delivers remarkably accelerated OER kinetics and superior apparent activity, indicated by an ultra-low overpotential potential of 257 mV at a high current density of 200 mA cm-2 . This work is of fundamental and practical significance for synergistic catalysis related to advanced energy conversion materials and technologies.
RESUMO
Photocatalytic reduction of excess CO2 in the atmosphere to value-added chemicals by visible light can be an effective solution to fuel shortage and global warming. Considering these issues, we designed and successfully synthesized a trinuclear Re(I)-coordinated organic cage (Re-C4R) as the supramolecular photocatalyst. Photophysical, electrochemical properties, and photocatalytic performance comparison of Re-C4R and its mononuclear analogue Re-bpy are discussed in detail. Notably, the covalent linkage of three Re(I) subunits in Re-C4R leads to TONCO = 691 (per Re(I) site in 4 h) more than three times as much as TONCO = 208 of Re-bpy. Compared to Re-bpy, higher current enhancement in the control CV experiments under CO2 was observed for Re-C4R. CO2 adsorption process can be promoted because of the cryptand structure and multiple amine groups of Re-C4R. Moreover, decay lifetimes of Re-C4R are shorter than those of Re-bpy in the ultrafast transient absorption (TA) and photoluminescence (PL) decay spectra, indicating that the trinuclear cryptate structure of Re-C4R could facilitate electron transfer efficiency during CO2 reduction.
RESUMO
The mountain butterfly Parnassius glacialis is a representative species of the genus Parnassius, which probably originated in the high-altitude Qinhai-Tibet Plateau in the Miocene and later dispersed eastward into relatively low-altitude regions of central to eastern China. However, little is known about the molecular mechanisms underlying the long-term evolutionary adaptation to heterogeneous environmental conditions of this butterfly species. In this study, we obtained the high-throughput RNA-Seq data from twenty-four adult individuals in eight localities, covering nearly all known distributional areas in China, and firstly identified the diapause-linked gene expression pattern that is likely to correlate with local adaptation in adult P. glacialis populations. Secondly, we found a series of pathways responsible for hormone biosynthesis, energy metabolism and immune defense that also exhibited unique enrichment patterns in each group that are probably related to habitat-specific adaptability. Furthermore, we also identified a suite of duplicated genes (including two transposable elements) that are mostly co-expressed to promote the plastic responses to different environmental conditions. Together, these findings can help us to better understand this species' successful colonization to distinct geographic areas from the western to eastern areas of China, and also provide us with some insights into the evolution of diapause in mountain Parnassius butterfly species.
Assuntos
Borboletas , Diapausa , Humanos , Animais , Borboletas/genética , Perfilação da Expressão Gênica , China , Expressão Gênica , TranscriptomaRESUMO
A visible light photosensitizing metal-organic cage is applied as an artificial supramolecular reactor to control the reaction of aryl radicals with terminal olefins under green light/solvent conditions, which facilitates selective transformation in the confined enzyme-mimicking environment to give a series of geometrically defined E/Z-alkenes. The hydrophobic cage displays good host-guest inclusion with aromatic substrates, promoting Meerwein arylation and protecting E-isomeric products during reaction; while a small amount of benzonitrile can turn on efficient EâZ isomerization. Besides π-π stacking, the hydrogen bonding and halogen bonding interactions also act as control forces for the arylation of aliphatic terminal olefins known as poor acceptors in classic Meerwein arylation. The application of this switchable cage-confined arylation catalysis has been demonstrated by the syntheses of Tapinarof and a marine natural product from the same substrate via controllable E/Z selectivity.
Assuntos
Alcenos , Metais , Alcenos/química , Isomerismo , Catálise , HalogêniosRESUMO
The multiple metastable excited states provided by excited-state intramolecular proton transfer (ESIPT) molecules are beneficial to bring temperature-dependent and color-tunable long persistent luminescence (LPL). Meanwhile, ESIPT molecules are intrinsically suitable to be modulated as D-π-A structure to obtain both one/two-photon excitation and LPL emission simultaneously. Herein, we report the rational design of a dynamic CdII coordination polymer (LIFM-106) from ESIPT ligand to achieve the above goals. By comparing LIFM-106 with the counterparts, we established a temperature-regulated competitive relationship between singlet excimer and triplet LPL emission. The optimization of ligand aggregation mode effectively boost the competitiveness of the latter. In result, LIFM-106 shows outstanding one/two-photon excited LPL performance with wide temperature range (100-380â K) and tunable color (green to red). The multichannel radiation process was further elucidated by transient absorption and theoretical calculations, benefiting for the application in anti-counterfeiting systems.
RESUMO
As a type of heterogeneous catalyst expected for the maximum atom efficiency, a series of single-atom catalysts (SACs) containing spatially isolated metal single atoms (M-SAs) have been successfully prepared by confining M-SAs in the pore-nanospaces of porphyrinic metal-organic frameworks (MOFs). The prepared MOF composites of M-SAs@Pd-PCN-222-NH2 (M = Pt, Ir, Au, and Ru) display exceptionally high and persistent efficiency in the photocatalytic hydrogen evolution reaction with a turnover number (TON) of up to 21713 in 32 h and a beginning/lasting turnover frequency (TOF) larger than 1200/600 h-1 based on M-SAs under visible light irradiation (λ ≥ 420 nm). The photo-/electrochemical property studies and density functional theory calculations disclose that the close proximity of the catalytically active Pt-SAs to the Pd-porphyrin photosensitizers with the confinement and stabilization effect by chemical binding could accelerate electron-hole separation and charge transfer in pore-nanospaces, thus promoting the catalytic H2 evolution reaction with lasting effectiveness.
RESUMO
Excited-state intramolecular proton transfer (ESIPT) molecules demonstrating specific enol-keto tautomerism and the related photoluminescence (PL) switch have wide applications in displaying, sensing, imaging, lasing, etc. However, an ESIPT-attributed coordination polymer showing alternative PL between thermally activated fluorescence (TAF) and long persistent luminescence (LPL) has never been explored. Herein, we report the assembly of a dynamic Cd(II) coordination polymer (LIFM-101) from the ESIPT-type ligand, HPI2C (5-(2-(2-hydroxyphenyl)-4,5-diphenyl-1H-imidazol-1-yl)isophthalic acid). For the first time, TAF and/or color-tuned LPL can be achieved by controlling the temperature under the guidance of ESIPT excited states. Noteworthily, the twisted structure of the HPI2C ligand in LIFM-101 achieves an effective mixture of the higher-energy excited states, leading to ISC (intersystem crossing)/RISC (reverse intersystem crossing) energy transfer between the high-lying keto-triplet state (Tn(K*)) and the first singlet state (S1(K*)). Meanwhile, experimental and theoretical results manifest the occurrence probability and relevance among RISC, ISC, and internal conversion (IC) in this unique ESIPT-attributed coordination polymer, leading to the unprecedented TAF/LPL switching mechanism, and paving the way for the future design and application of advanced optical materials.
RESUMO
Supramolecular cage chemistry is of lasting interest because, as artificial blueprints of natural enzymes, the self-assembled cage structures not only provide substrate-hosting biomimetic environments but also can integrate active sites in the confined nanospaces for function synergism. Herein, we demonstrate a vertex-directed organic-clip chelation assembly strategy to construct a metal-organic cage Fe4L68+ (MOC-63) incorporating 12 imidazole proton donor-acceptor motifs and four redox-active Fe centers in an octahedral coordination nanospace. Different from regular supramolecular cages assembled with coordination metal vertices, MOC-63 comprises six ditopic organic-clip ligands as vertices and four tris-chelating Fe(Nâ©N)3 moieties as faces, thus improving its acid, base, and redox robustness by virtue of cage-stabilized dynamics in solution. Improved dehydrogenation catalysis of 1,2,3,4-tetrahydroquinoline derivatives is accomplished by MOC-63 owing to a supramolecular cage effect that synergizes multiple Fe centers and radical species to expedite intermediate conversion of the multistep reactions in a cage-confined nanospace. The acid-base buffering imidazole motifs play a vital role in modulating the total charge state to resist pH variation and tune the solubility among varied solvents, thereby enhancing reaction acceleration in acidic conditions and rendering a facile recycling catalytic process.