Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 29(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338305

RESUMO

Pesticides have become an integral part of modern agricultural practices, but their widespread use poses a significant threat to human health. As such, there is a pressing need to develop effective methods for detecting pesticides in food and environmental samples. Traditional chromatography methods and common rapid detection methods cannot satisfy accuracy, portability, long storage time, and solution stability at the same time. In recent years, photoelectrochemical (PEC) sensing technology has gained attention as a promising approach for detecting various pesticides due to its salient advantages, including high sensitivity, low cost, simple operation, fast response, and easy miniaturization, thus becoming a competitive candidate for real-time and on-site monitoring of pesticide levels. This review provides an overview of the recent advancements in PEC methods for pesticide detection and their applications in ensuring food and environmental safety, with a focus on the categories of photoactive materials, from single semiconductor to semiconductor-semiconductor heterojunction, and signaling mechanisms of PEC sensing platforms, including oxidation of pesticides, steric hindrance, generation/decrease in sacrificial agents, and introduction/release of photoactive materials. Additionally, this review will offer insights into future prospects and confrontations, thereby contributing novel perspectives to this evolving domain.


Assuntos
Técnicas Biossensoriais , Praguicidas , Humanos , Praguicidas/análise , Oxirredução , Técnicas Biossensoriais/métodos
2.
Angew Chem Int Ed Engl ; : e202404683, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771068

RESUMO

Pt automatically adsorbed on oxygen vacancy of TiO2 via an in situ interfacial redox reaction, resulting in atomically dispersion of Pt on TiO2. In the upgrading of lignin-derived 4-propylguaiacol, single-atom catalyst (SAC) Pt/TiO2-H achieved a conversion of 96.9 % and a demethoxylation selectivity of 93.3 % under 3 MPa H2 at 250 °C for 3 h, markedly different from the performance of nanoparticle counterpart that gave deep deoxygenation selectivity over 99.0 %. The high demethoxylation activity of SAC Pt/TiO2-H is mainly attributed to its weak hydrogen spillover capacity that suppressed the benzene ring hydrogenation and the deep deoxygenation. Additionally, SAC Pt/TiO2-H reduced the energy barrier of CAr-OCH3 bond cleavage and accordingly lowered the Gibbs free energy of the demethoxylation reaction. This facile method could fabricate single-atom Au, Pd, Ir, and Ru supported on TiO2-H, demonstrating the generality of this strategy for the establishment of a library of SACs. Moreover, SAC exhibited versatile capacity in demethoxylation of different lignin-derived monomers and high stability. This study showcases the superiority of atomically dispersed metal catalysts for selective demethoxylation reactions and proposes a renewable alternative to fossil-based 4-alkylphenols through upgrading of lignin-derived monomers.

3.
Crit Rev Food Sci Nutr ; : 1-19, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095598

RESUMO

Bioengineered strategies enable gut chips to faithfully replicate essential features of intestinal microsystems, encompassing geometric properties, peristalsis, intraluminal fluid flow, oxygen gradients, and the microbiome. This emerging technique serves as a powerful tool for nutrition studies by emulating the absorption and distribution processes in a manner highly relevant to human physiology. It offers unprecedented accessibility for investigating the mechanisms governing nutrition metabolism. While the application of gut-on-chip models in disease modeling and drug screening has been extensively explored, their potential in dietary nutrition research remains relatively unexplored. This comprehensive review provides an overview of the different approaches employed in constructing gut-on-chip platforms using diverse cell sources and niche mimics. Furthermore, it explores the applications and prospects of gut-on-chips in nutrition-related investigations, with a specific focus on carotenoid transport, absorption, and metabolism. Lastly, this review discusses the future development trajectory of this groundbreaking technology paradigm, highlighting its broad applicability in the field of food technology. By harnessing the capabilities of these state-of-the-art techniques within gut chip platforms, researchers can establish a robust scientific foundation for unraveling the intricate mechanisms that govern the behavior and functional properties of carotenoids.

4.
Crit Rev Food Sci Nutr ; : 1-25, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37655606

RESUMO

With the increasing concerns of food safety and public health, tremendous efforts have been concentrated on the development of effective, reliable, nondestructive methods to evaluate the freshness level of different kinds of food. Natural colorants-based intelligent colorimetric indicators which are typically constructed with natural colorants and polymer matrices has been regarded as an innovative approach to notify the customers and retailers of the food quality during the storage and transportation procedure in real-time. This review briefly elucidates the mechanism of natural colorants used for intelligent colorimetric indicators and fabrication methodologies of natural colorants-based food freshness indicators. Subsequently, their multifunctional applications in intelligent food packaging systems like antioxidant packaging, antimicrobial packaging, biodegradable packaging, UV-blocking packaging and inkless packaging are well introduced. This paper also summarizes several optimizing strategies for the practical application of this advanced technology from different perspectives. Strategies like adopting a hydrophobic matrix, constructing double-layer film and encapsulation have been developed to improve the stability of the indicators. Co-pigmentation, metal ion complexation, pigment-mixing and using substrates with high surface area are proved to be effective to enhance the sensitivity of the indicators. Approaches include multi-index evaluation, machine learning and smartphone-assisted evaluation have been proven to improve the accuracy of the intelligent food freshness indicators. Finally, future research opportunities and challenges are proposed. Based on the fundamental understanding of natural colorants-based intelligent colorimetric food freshness indicators, and the latest research and findings from literature, this review article will help to develop better, lower cost and more reliable food freshness evaluation technique for modern food industry.

5.
Crit Rev Food Sci Nutr ; 62(16): 4418-4434, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33480263

RESUMO

Microfluidic intestine-on-a-chip enables novel means of emulating human intestinal pathophysiology in vitro, which can potentially reduce animal testing and substitute simple 2D culture system. Though a great deal of work has been done in the development of microfluidic platforms for intestinal disease modeling and drug screening, potential investigation of the effect of bioactive food compounds on intestinal inflammation remains largely unexplored. In this review, different biomaterials and chip designs have been explored in the fabrication of intestine-on-a-chip. Other key parameters must be carefully controlled and selected, including shear stress, cell type and cell co-culture spatial configuration, etc. Appropriate techniques to quantify the barrier integrity including trans-epithelial electric resistance, specific tight junction markers and permeability measurements should be standardized and compared with in vivo data. Integration of the gut microbiome and the provision of intestinal-specific environment are the key parameters to realize the in vivo intestinal model simulation and accelerate the screening efficiency of bioactive food compounds.


Assuntos
Microbioma Gastrointestinal , Enteropatias , Animais , Intestinos , Dispositivos Lab-On-A-Chip , Microfluídica
6.
J Clin Lab Anal ; 36(1): e24156, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34845750

RESUMO

BACKGROUND: Vascular calcification (VC) is usually associated with cardiovascular diseases (CVDs), which are one of the main causes of mortality in the world. This study aimed to analyze the expression of circular RNAs (circRNAs) in patients with VC and to evaluate biomarkers for the diagnosis of VC. METHODS: Calcified human aortic endothelial cells (HAECs) and the calcification in mouse aorta were detected by qRT-PCR. Subsequently, this was verified in the plasma of patients with coronary artery calcification (CAC). The plasma of 40 patients in the control group and 31 patients in the calcified group were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR) to detect the level of circSamd4a in the blood. The diagnostic value was evaluated by logistic regression analysis and the working characteristics of subjects. RESULTS: In the HAECs, the qRT-PCR showed a significant decrease in the level of circSamd4a expression in the calcification group compared to the control group (p < 0.05). The calcified mouse aorta showed the same trend for circSamd4a expression, wherein the difference was statistically significant (p < 0.05); the expression of circSamd4a was significantly downregulated in the plasma of patients with VC (p < 0.01). The receiver operating characteristic (ROC) curves of circSamd4a in patients with VC and control group showed that the area under the curve (AUC) was 0.81 (95% CI: 0.707-0.913; p < 0.001). CONCLUSION: CircSamd4a showed a stable downward trend in different specimens, and had significant advantages as a biomarker for diagnosis of VC.


Assuntos
RNA Circular/sangue , Calcificação Vascular , Idoso , Animais , Biomarcadores/sangue , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , RNA Circular/genética , RNA Circular/metabolismo , Organismos Livres de Patógenos Específicos , Calcificação Vascular/sangue , Calcificação Vascular/diagnóstico , Calcificação Vascular/epidemiologia , Calcificação Vascular/genética
7.
Compr Rev Food Sci Food Saf ; 21(2): 2002-2031, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34716644

RESUMO

The rapid development of nanoscience and nanoengineering provides new perspectives on the composition of food materials, and has great potential for food biology research and applications. The use of nanoparticle additives and the discovery of endogenous nanoparticles in food make it important to elucidate in vivo safety of nanomaterials. Nanoparticles will spontaneously adsorb proteins during transporting in blood and a protein corona can be formed on the nanoparticle surface inside the human body. Protein corona affects the physicochemical properties of nanoparticles and the structure and function of proteins, which in turn affects a series of biological reactions. This article reviewed basic information about protein corona of food-related nanoparticles, elucidated the influence of protein corona on nanoparticles properties and protein structure and function, and discussed the effect of protein corona on nanoparticles in vivo. The effects of protein corona on nanoparticles transport, cellular uptake, cytotoxicity, and immune response were reviewed, and the reasons for these effects were also discussed. Finally, future research perspectives for food protein corona were proposed. Protein corona gives food nanoparticles a new identity, which makes proteins bound to nanoparticles undergo structural transformations that affect their recognition by receptors in vivo. It can have positive or negative impacts on cellular uptake and toxicity of nanoparticles and even trigger immune responses. Understanding the effects of protein corona have potential in evaluating the fate of the food-related nanoparticles, providing physicochemical and biological information about the interaction between proteins and foodborne nanoparticles. The review article will help to evaluate the safety of protein coronas formed on nanoparticles in food, and may provide fundamental information for understanding and controlling nanotoxicity.


Assuntos
Nanopartículas , Coroa de Proteína , Humanos , Nanopartículas/química , Nanopartículas/metabolismo , Coroa de Proteína/química , Coroa de Proteína/metabolismo , Proteínas
8.
Biochem Biophys Res Commun ; 535: 60-65, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33341674

RESUMO

Nonalcoholic steatohepatitis (NASH) is characterized by inflammation, hepatocellular injury, and different degrees of fibrosis. Previous studies have indicated that the transcriptional coactivator with PDZ-binding motif TAZ (WWTR1) is correlated with the increased level of liver cholesterol which suppresses TAZ proteasomal degradation and promotes fibrotic NASH by activating soluble adenylyl cyclase -calcium-RhoA pathway. However, the exact mechanism by which TAZ promotes inflammatory and hepatocyte injury has not yet been fully addressed. Reportedly, p62/Sqstm1plays a pivotal role in inflammatory and hepatocyte injury during NASH development. Here, we demonstrated that p62/Sqstm1 was overexpressed in the livers of mouse NASH models in a TAZ-dependent manner. In addition, hepatocyte-specific TAZ deletion reduced p62/Sqstm1 both in vitro and in vivo. Strikingly, luciferase reporter data demonstrated that p62/Sqstm1 is a TAZ/TEAD target gene and can be transcriptionally regulated by TAZ, indicating that hepatocyte-specific TAZ deletion downregulates p62/Sqstm1 expression in NASH.


Assuntos
Regulação para Baixo , Deleção de Genes , Hepatócitos/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Especificidade de Órgãos , Proteína Sequestossoma-1/metabolismo , Transativadores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linhagem Celular , Dieta , Inativação Gênica , Camundongos Endogâmicos C57BL , Proteína Sequestossoma-1/genética , Transcrição Gênica
9.
Biotechnol Lett ; 43(2): 383-392, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33145669

RESUMO

Glioma is one of the most aggressive and highly fatal diseases with an extremely poor prognosis. Considering the poor clinical response to therapy in glioma, it is urgent to establish an in vitro model to facilitate the screening and assessment of anti-brain-tumor drugs. The blood-brain barrier (BBB), as well as liver metabolism plays an important role in determining the pharmacological activity of many anti-brain-tumor drugs. In this work, we designed a multi-interface liver-brain chip integrating co-culture system to assess hepatic metabolism dependent cytotoxicity of anti-brain-tumor drug in vitro. This microdevice composed of three microchannels which were separated by porous membrane and collagen. HepG2 and U87 cells were cultured in separated channels as mimics of liver and glioblastoma. Brain microvascular endothelial cells (BMECS) and cerebral astrocytes were co-cultured on collagen to mimic the brain microvascular endothelial barrier. Three common anti-tumor drugs, paclitaxel (PTX), capecitabine (CAP) and temozolomide (TMZ), were evaluated on this chip. In integrated liver-brain chip, liver enhanced the cytotoxicity of CAP on U87 cells by 30%, but having no significant effect on TMZ. The BBB decreased the cytotoxicity of PTX by 20%, while no significant effects were observed on TMZ and CAP, indicating the importance of liver metabolism and blood-brain barrier on the evaluation of anti-brain-tumor drugs. This work provides a biomimetic liver-brain model to mimic the physiological and pharmacological processes in vitro and presents a simple platform for long-term cell co-culture, drug delivery and metabolism, and real-time analysis of drug effects on brain cancer.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Fígado/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Capecitabina/metabolismo , Capecitabina/farmacologia , Técnicas de Cocultura , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Células Hep G2 , Humanos , Inativação Metabólica/efeitos dos fármacos , Dispositivos Lab-On-A-Chip , Fígado/metabolismo , Nanopartículas/química , Paclitaxel/metabolismo , Paclitaxel/farmacologia , Temozolomida/metabolismo
10.
Artif Organs ; 42(12): 1196-1205, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30256442

RESUMO

Drug metabolism in the intestine is considered to substantially contribute to the overall first-pass metabolism, which has been neglected for a long time. It is highly desirable to develop a reliable model to evaluate drug metabolism in the intestine in vitro. In this work, we made the first attempt to develop a biomimetic human gut-on-a-chip for modeling drug metabolism in intestine. In this chip, constant flow, together with porous nitrocellulose membrane and collagen I, mimics an in vivo-like intestinal microenvironment. The Caco-2 cells grown in the chip formed a compact intestinal epithelial layer with continuous expression of the tight junction protein, ZO-1. Furthermore, higher gene expression of villin, sucrase-isomaltase, and alkaline phosphatase demonstrated that cells in the biomimetic human gut-on-a-chip device were more mature with near-physiological functions compared to the control on planar substrate. In particular, cellular metabolic activity was assessed on different substrates, indicating higher metabolic efficiency of ifosfamide and verapamil in the biomimetic human gut-on-a-chip model. Taken together, our results suggested that this biomimetic human gut-on-a-chip promoted the differentiation of intestinal cells with enhanced functionality by creating a biomimetic 3D microenvironment in vitro. It might offer a bioactive, low-cost, and flexible in vitro platform for studies on intestinal metabolism as well as preclinical drug development.


Assuntos
Mucosa Intestinal/metabolismo , Dispositivos Lab-On-A-Chip , Preparações Farmacêuticas/metabolismo , Biomimética , Células CACO-2 , Expressão Gênica , Humanos , Ifosfamida/metabolismo , Verapamil/metabolismo
11.
J Environ Sci (China) ; 26(4): 885-91, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25079419

RESUMO

The effects of cathode potentials and initial nitrate concentrations on nitrate reduction in bioelectrochemical systems (BESs) were reported. These factors could partition nitrate reduction between denitrification and dissimilatory nitrate reduction to ammonium (DNRA). Pseudomonas alcaliphilastrain MBR utilized an electrode as the sole electron donor and nitrate as the sole electron acceptor. When the cathode potential was set from -0.3 to -1.1 V (vs. Ag/AgCl) at an initial nitrate concentration of 100 mg NO3(-)-N/L, the DNRA electron recovery increased from (10.76 ± 1.6)% to (35.06 ± 0.99)%; the denitrification electron recovery decreased from (63.42 ± 1.32)% to (44.33 ± 1.92)%. When the initial nitrate concentration increased from (29.09 ± 0.24) to (490.97 ± 3.49) mg NO3(-)-N/L at the same potential (-0.9 V), denitrification electron recovery increased from (5.88 ± 1.08)% to (50.19 ± 2.59)%; the DNRA electron recovery declined from (48.79 ± 1.32)% to (16.02 ± 1.41)%. The prevalence of DNRA occurred at high ratios of electron donors to acceptors in the BESs and denitrification prevailed against DNRA under a lower ratio of electron donors to acceptors. These results had a potential application value of regulating the transformation of nitrate to N2 or ammonium in BESs for nitrate removal.


Assuntos
Fontes de Energia Bioelétrica , Desnitrificação , Pseudomonas/metabolismo , Eletrodos , Nitratos/metabolismo , Oxirredução
12.
Carbohydr Polym ; 326: 121645, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142106

RESUMO

Anthocyanins are promising naturally occurring food preservatives for enhancing the quality of food products due to their excellent antioxidant properties. However, their low stability hinders their food packaging application. Here, we propose a facile strategy to achieve the improved stability of anthocyanins encapsulated in γ-cyclodextrin metal-organic frameworks (CD-MOFs) with an in-depth exploration of their structure-property relationships. The adsorbed anthocyanins in CD-MOFs are stabilized by multiple cooperative non-covalent interactions including hydrogen bonding and van der Waals (vdW) interactions as demonstrated by density functional theory (DFT) calculations and spectroscopy analysis. Particularly, by ion-exchange of acetate ions into the pores of CD-MOFs, the resulting CD-MOFs (CD-MOF_OAc) shows a higher anthocyanins adsorption rate with a maximum loading capacity of 83.7 % at 1 min. Besides, CD-MOF_OAc possesses the more effective protecting effect on anthocyanins with at least two-fold enhancement of stability in comparison of free anthocyanins under heating and light irradiation. The anthocyanins encapsulated CD-MOFs films for fruit freshness was validated by the Kyoho experiment. This novel encapsulation system provides a new possibility for the potential use of CD-MOFs as the encapsulating material for anthocyanins in fruit preservation.

13.
Foods ; 13(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38397491

RESUMO

Obesity has become a serious global public health risk threatening millions of people. In this study, the astaxanthin-anthocyanin nanoparticles (AXT-ACN NPs) were used to investigate their effects on the lipid accumulation and antioxidative capacity of the high-sugar-diet-induced high-fat Caenorhabditis elegans (C. elegans). It can be found that the lifespan, motility, and reproductive capacity of the high-fat C. elegans were significantly decreased compared to the normal nematodes in the control group. However, treatment of high-fat C. elegans with AXT-ACN NPs resulted in a prolonged lifespan of 35 days, improved motility, and a 22.06% increase in total spawn production of the nematodes. Furthermore, AXT-ACN NPs were found to effectively extend the lifespan of high-fat C. elegans under heat and oxidative stress conditions. Oil-red O staining results also demonstrated that AXT-ACN NPs have a remarkable effect on reducing the fat accumulation in nematodes, compared with pure astaxanthin and anthocyanin nanoparticles. Additionally, AXT-ACN NPs can significantly decrease the accumulation of lipofuscin and the level of reactive oxygen species (ROS). The activities of antioxidant-related enzymes in nematodes were further measured, which revealed that the AXT-ACN NPs could increase the activities of catalase (CAT), superoxidase dismutase (SOD), and glutathione peroxidase (GSH-Px), and decrease the malondialdehyde (MDA) content. The astaxanthin and anthocyanin in AXT-ACN NPs showed sound synergistic antioxidation and lipid-lowering effects, making them potential components in functional foods.

14.
J Agric Food Chem ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38920087

RESUMO

Probiotics are indispensable for maintaining the structure of gut microbiota and promoting human health, yet their survivability is frequently compromised by environmental stressors such as temperature fluctuations, pH variations, and mechanical agitation. In response to these challenges, microfluidic technology emerges as a promising avenue. This comprehensive review delves into the utilization of microfluidic technology for the encapsulation and delivery of probiotics within the gastrointestinal tract, with a focus on mitigating obstacles associated with probiotic viability. Initially, it elucidates the design and application of microfluidic devices, providing a precise platform for probiotic encapsulation. Moreover, it scrutinizes the utilization of carriers fabricated through microfluidic devices, including emulsions, microspheres, gels, and nanofibers, with the intent of bolstering probiotic stability. Subsequently, the review assesses the efficacy of encapsulation methodologies through in vitro gastrointestinal simulations and in vivo experimentation, underscoring the potential of microfluidic technology in amplifying probiotic delivery efficiency and health outcomes. In sum, microfluidic technology represents a pioneering approach to probiotic stabilization, offering avenues to cater to consumer preferences for a diverse array of functional food options.

15.
J Agric Food Chem ; 72(12): 6347-6359, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38408187

RESUMO

Age-related macular degeneration (AMD), a leading cause of visual impairment in the aging population, lacks effective treatment options due to a limited understanding of its pathogenesis. Lutein, with its strong antioxidant properties and ability to mitigate AMD by absorbing ultraviolet (UV) rays, faces challenges related to its stability and bioavailability in functional foods. In this study, we aimed to develop delivery systems using protein-saccharide conjugates to enhance lutein delivery and protect adult retinal pigment epithelial (ARPE-19) cells against sodium iodate (NaIO3)-induced damage. Various saccharides, including mannose, galactose, lactose, maltose, dextran, and maltodextrin, were conjugated to casein via the Maillard reaction for lutein delivery. The resulting lutein-loaded nanoparticles exhibited small size and spherical characteristics and demonstrated improved thermal stability and antioxidant capacity compared to free lutein. Notably, these nanoparticles were found to be nontoxic, as evidenced by reduced levels of cellular reactive oxygen species production (167.50 ± 3.81, 119.57 ± 3.45, 195.15 ± 1.41, 183.96 ± 3.11, 254.21 ± 3.97, 283.56 ± 7.27%) and inhibition of the mitochondrial membrane potential decrease (58.60 ± 0.29, 65.05 ± 2.91, 38.88 ± 1.81, 42.95 ± 1.39, 23.52 ± 1.04, 25.24 ± 0.08%) caused by NaIO3, providing protection against cellular damage and death. Collectively, our findings suggest that lutein-loaded nanoparticles synthesized via the Maillard reaction hold promise for enhanced solubility, oral bioavailability, and biological efficacy in the treatment of AMD.


Assuntos
Degeneração Macular , Nanopartículas , Humanos , Idoso , Luteína , Antioxidantes/farmacologia , Caseínas , Glicosilação , Epitélio Pigmentado da Retina , Degeneração Macular/patologia , Células Epiteliais
16.
Int J Biol Macromol ; 256(Pt 2): 128494, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38035969

RESUMO

Dextran sulfate sodium is one of the important members in the field of polysaccharide biotechnology, which can induce inflammatory bowel disease (IBD) in the gastrointestinal tract. Nevertheless, the application of astaxanthin (AST) and epigallocatechin-3-gallate (EGCG), known for their pronounced antioxidant and anti-inflammatory properties, is encumbered by limited stability and bioavailability. To surmount this challenge, dual nutritional macromolecular nanoparticles were provided for alleviating IBD. The forementioned strategy entailed the utilization of EGCG as a wall material via the Mannich reaction, resulting in the creation of specialized nanocarriers capable of mitochondrial targeting and glutathione-responsive AST delivery. In vitro investigations, these nanocarriers demonstrated an enhanced propensity for mitochondrial accumulation, leading to proficient elimination of reactive oxygen species and preservation of optimal mitochondrial membrane potential about 1.5 times stronger than free AST and EGCG. Crucially, in vivo experiments showed that the colon length of IBD mice treated with these nanocarriers increased by 51.29 % and facilitated the polarization of M2 macrophages. Moreover, the assimilation of these nanocarriers exerted a favorable impact on the composition of gut microbiota. These findings underscore the immense potential of dual nutrition nanocarriers in contemporaneously delivering hydrophobic biological activators through oral absorption, thereby presenting a highly promising avenue for combating IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Sulfatos , Animais , Camundongos , Colite/induzido quimicamente , Dextranos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colo , Xantofilas
17.
ACS Appl Mater Interfaces ; 16(8): 9854-9867, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38375789

RESUMO

Extracellular vesicles (EVs) possess favorable biocompatibility and immunological characteristics, making them optimal carriers for bioactive substances. In this study, an innovative hepatic-targeted vesicle system encapsulating with fucoxanthin (GA-LpEVs-FX) was successfully designed and used to alleviate nonalcoholic fatty liver disease. The formulation entails the self-assembly of EVs derived from Lactobacillus paracasei (LpEVs), modification with glycyrrhetinic acid (GA) via amide reaction offering the system liver-targeting capacity and loading fucoxanthin (FX) through sonication treatment. In vitro experiments demonstrated that GA-LpEVs-FX effectively mitigated hepatic lipid accumulation and attenuated reactive oxygen species-induced damage resulting lipid accumulation (p < 0.05). In vivo, GA-LpEVs-FX exhibited significant downregulation of lipogenesis-related proteins, namely, fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC1), and sterol regulatory element binding protein 1 (SREBP-1), subsequently ameliorating lipid metabolism disorders (p < 0.05), and the stability of GA-LpEVs-FX significantly improved compared to free FX. These findings establish a novel formulation for utilizing foodborne components for nonalcoholic fatty liver disease alleviation.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Xantofilas , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Biomimética , Fígado/metabolismo , Lipídeos/farmacologia , Metabolismo dos Lipídeos
18.
Food Funct ; 15(3): 1323-1339, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38205590

RESUMO

The remarkable performance of fucoxanthin (FX) in antioxidant and weight loss applications has generated considerable interest. However, the application of fucoxanthin in the food and pharmaceutical industries is limited due to its highly unsaturated structure. This research aimed to investigate the synergistic mechanism of a unique Pickering emulsion gel stabilized by salmon byproduct protein (SP)-pectin (PE) aggregates and evaluate its ability to enhance the stability and bioavailability of FX. Various analytical techniques, including fluorescence spectroscopy, contact angle testing, turbidity analysis, and cryo-field scanning electron microscopy, were used to demonstrate that electrostatic and hydrophobic interactions between SP and PE contribute to the exceptional stability and wettability of the Pickering emulsion gels. Rheological analysis revealed that increasing the concentration of SP-PEs resulted in shear-thinning behavior, excellent thixotropic recovery performance, higher viscoelasticity, and good thermal stability of the Pickering emulsion gels stabilized by SP-PEs(SEGs). Furthermore, encapsulation of FX in the gels showed protected release under simulated oral and gastric conditions, with the subsequent controlled release in the intestine. Compared to free FX and the control group without PE (SEG-0), SEG-4 exhibited a 1.92-fold and 1.37-fold increase in the total bioavailable fraction of FX, respectively. Notably, during the study, it was observed that SEGs have the potential to serve as cake decoration for 3D printing to replace traditional cream under lower oil phase conditions (50%). These findings suggest that SP-PEs-stabilized Pickering emulsion gels hold promise as carriers for delivering bioactive compounds, offering the potential for various innovative food applications.


Assuntos
Pectinas , Salmão , Xantofilas , Animais , Emulsões/química , Géis/química , Tamanho da Partícula
19.
Colloids Surf B Biointerfaces ; 239: 113903, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38599036

RESUMO

Nicotinamide mononucleotide (NMN) is being investigated for its ability to address the decline in NAD+ level during aging. This study aimed to construct a delivery system based on ovalbumin and fucoidan nanoparticles to ameliorate the bioaccessibility of NMN by increasing NAD+ level in aging mouse model. The NMN-loaded ovalbumin and fucoidan nanoparticles (OFNPs) were about 177 nm formed by the interplay of hydrogen bonds between ovalbumin and fucoidan. Compared with free NMN, NMN-loaded OFNPs intervention could obviously improve the antioxidant enzyme activity of senescent cell induced by D-galactose. The NMN-loaded OFNPs treatment could ameliorate the loss of weight and organ index induced by senescence, and maintain the water content for the aging mice. The Morris maze test indicated that hitting blind side frequency and escape time of NMN-loaded OFNPs group decreased by 13% and 35% compared with that of free NMN group. Furthermore, the NMN-loaded OFNPs significantly alleviated the age-related oxidative stress and increased the generation of NAD+ 1.34 times by improving the bioaccessibility of NMN. Our data in this study supplied a strategy to enhance the bioavailability of NMN in senescence treatment.


Assuntos
Envelhecimento , Galactose , NAD , Nanopartículas , Mononucleotídeo de Nicotinamida , Polissacarídeos , Animais , Galactose/química , Nanopartículas/química , Camundongos , Envelhecimento/efeitos dos fármacos , Polissacarídeos/química , Polissacarídeos/farmacologia , NAD/metabolismo , NAD/química , Mononucleotídeo de Nicotinamida/química , Mononucleotídeo de Nicotinamida/farmacologia , Tamanho da Partícula , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ovalbumina
20.
Foods ; 13(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38731734

RESUMO

Cancer is a crucial global health problem, and prevention is an important strategy to reduce the burden of the disease. Daily diet is the key modifiable risk factor for cancer, and an increasing body of evidence suggests that specific nutrients in foods may have a preventive effect against cancer. This review summarizes the current evidence on the role of nutrients from foods in cancer intervention. It discusses the potential mechanisms of action of various dietary components, including phytochemicals, vitamins, minerals, and fiber. The findings of epidemiological and clinical studies on their association with cancer risk are highlighted. The foods are rich in bioactive compounds such as carotenoids, flavonoids, and ω-3 fatty acids, which have been proven to have anticancer properties. The effects of steady-state delivery and chemical modification of these food's bioactive components on anticancer and intervention are summarized. Future research should focus on identifying the specific bioactive compounds in foods responsible for their intervention effects and exploring the potential synergistic effects of combining different nutrients in foods. Dietary interventions that incorporate multiple nutrients and whole foods may hold promise for reducing the risk of cancer and improving overall health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA