Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Acta Biomater ; 7(2): 530-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20883840

RESUMO

An important requirement for a bone tissue engineering scaffold is a stiffness gradient that mimics that of native bone. Such scaffolds can be achieved by controlling their structure and porosity and are termed functionally graded scaffolds (FGS). Currently, the main challenges in FGS fabrication include the iterative and tedious design process as well as a heavy reliance on the user's CAD/CAM skills. This work aims to bring automated FGS production a step closer by providing a database that correlates scaffold porosity values and the corresponding compressive stiffness and integrating it into the design process. To achieve this goal, scaffolds with different structural configurations were designed using CASTS (Computer Aided System for Tissue Scaffolds), an in-house developed library system consisting of 13 different polyhedral units that can be assembled into scaffold structures. Polycaprolactone (PCL) was chosen as the scaffold material, while selective laser sintering, a powder-based rapid prototyping or additive manufacturing system was employed to fabricate the scaffolds. Mathematical relations correlating scaffold porosity and compressive stiffness readings were formulated and compiled. In addition, cytotoxicity assessment was conducted to evaluate the toxicity of the fabricated PCL scaffolds. Lastly, a brief demonstration of how the formulated relations are used in the FGS design process is presented.


Assuntos
Lasers , Teste de Materiais/métodos , Fenômenos Mecânicos , Alicerces Teciduais/química , Sobrevivência Celular/efeitos dos fármacos , Força Compressiva/efeitos dos fármacos , Fenômenos Mecânicos/efeitos dos fármacos , Poliésteres/farmacologia , Porosidade/efeitos dos fármacos
2.
Acta Biomater ; 6(6): 2028-34, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20026436

RESUMO

An advanced manufacturing technique, selective laser sintering (SLS), was utilized to fabricate a porous polycaprolactone (PCL) scaffold designed with an automated algorithm in a parametric library system named the "computer-aided system for tissue scaffolds" (CASTS). Tensile stiffness of the sintered PCL strut was in the range of 0.43+/-0.15MPa when a laser power of 3W and scanning speed of 150 in s(-1) was used. A series of compressive mechanical characterizations was performed on the parametric scaffold design and an empirical formula was presented to predict the compressive stiffness of the scaffold as a function of total porosity. In this work, the porosity of the scaffold was selected to be 85%, with micropores (40-100mum) throughout the scaffold. The compressive stiffness of the scaffold was 345kPa. The feasibility of using the scaffold for cardiac tissue engineering was investigated by culturing C2C12 myoblast cells in vitro for 21days. Fluorescence images showed cells were located throughout the scaffold. High density of cells at 1.2x10(6)cellsml(-1) was recorded after 4days of culture. Fusion and differentiation of C2C12 were observed as early as 6days in vitro and was confirmed with myosin heavy chain immunostaining after 11days of cell culture. A steady population of cells was then maintained throughout 21days of culturing. This work demonstrated the feasibility of tailoring the mechanical property of the scaffold for soft tissue engineering using CASTS and SLS. The macroarchitecture of the scaffold can be modified efficiently to fabricate scaffolds with different macropore sizes or changing the elemental cell design in CASTS. Further process and design optimization could be carried out in the future to fabricate scaffolds that match the tensile strength of native myocardium, which is of the order of tens of kPa.


Assuntos
Materiais Biocompatíveis/química , Lasers , Células Musculares/citologia , Células Musculares/fisiologia , Poliésteres/química , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Técnicas de Cultura de Células/métodos , Linhagem Celular , Teste de Materiais , Poliésteres/efeitos da radiação , Porosidade , Ratos , Propriedades de Superfície
3.
J Mech Behav Biomed Mater ; 1(2): 140-52, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19627779

RESUMO

Tissue Engineering (TE) aims to create biological substitutes to repair or replace failing organs or tissues due to trauma or ageing. One of the more promising approaches in TE is to grow cells on biodegradable scaffolds, which act as temporary supports for the cells to attach, proliferate and differentiate; after which the scaffold will degrade, leaving behind a healthy regenerated tissue. Tissues in nature, including human tissues, exhibit gradients across a spatial volume, in which each identifiable layer has specific functions to perform so that the whole tissue/organ can behave normally. Such a gradient is termed a functional gradient. A good TE scaffold should mimic such a gradient, which fulfils the biological and mechanical requirements of the target tissue. Thus, the design and fabrication process of such scaffolds become more complex and the introduction of computer-aided tools will lend themselves well to ease these challenges. This paper reviews the needs and characterization of these functional gradients and the computer-aided systems used to ease the complexity of the scaffold design stage. These include the fabrication techniques capable of building functionally graded scaffolds (FGS) using both conventional and rapid prototyping (RP) techniques. They are able to fabricate both continuous and discrete types of FGS. The challenge in fabricating continuous FGS using RP techniques lies in the development of suitable computer aided systems to facilitate continuous FGS design. What have been missing are the appropriate models that relate the scaffold gradient, e.g. pore size, porosity or material gradient, to the biological and mechanical requirements for the regeneration of the target tissue. The establishment of these relationships will provide the foundation to develop better computer-aided systems to help design a suitable customized FGS.


Assuntos
Materiais Biomiméticos/química , Técnicas de Cultura de Células/métodos , Matriz Extracelular/química , Engenharia Tecidual/métodos , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA