Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Inflamm Regen ; 44(1): 11, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443988

RESUMO

Gut dysbiosis is closely linked to the pathogenesis of inflammatory bowel disease (IBD). Emerging studies highlight the relationship between host metabolism and the modulation of gut microbiota composition through regulating the luminal microenvironment. In IBD, various disease-associated factors contribute to the significant perturbation of host metabolism. Such disturbance catalyzes the selective proliferation of specific microbial populations, particularly pathobionts such as adherent invasive Escherichia coli and oral-derived bacteria. Pathobionts employ various strategies to adapt better to the disease-associated luminal environments. In addition to the host-microbe interaction, recent studies demonstrate that the metabolic network between commensal symbionts and pathobionts facilitates the expansion of pathobionts in the inflamed gut. Understanding the metabolic network among the host, commensal symbionts, and pathobionts provides new insights into the pathogenesis of IBD and novel avenues for treating IBD.

2.
Gut Microbes ; 16(1): 2333463, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545880

RESUMO

The ectopic gut colonization by orally derived pathobionts has been implicated in the pathogenesis of various gastrointestinal diseases, including inflammatory bowel disease (IBD). For example, gut colonization by orally derived Klebsiella spp. has been linked to IBD in mice and humans. However, the mechanisms whereby oral pathobionts colonize extra-oral niches, such as the gut mucosa, remain largely unknown. Here, we performed a high-density transposon (Tn) screening to identify genes required for the adaptation of an oral Klebsiella strain to different mucosal sites - the oral and gut mucosae - at the steady state and during inflammation. We find that K. aerogenes, an oral pathobiont associated with both oral and gut inflammation in mice, harbors a newly identified genomic locus named "locus of colonization in the inflamed gut (LIG)" that encodes genes related to iron acquisition (Sit and Chu) and host adhesion (chaperon usher pili [CUP] system). The LIG locus is highly conserved among K. aerogenes strains, and these genes are also present in several other Klebsiella species. The Tn screening revealed that the LIG locus is required for the adaptation of K. aerogenes in its ectopic niche. In particular, we determined K. aerogenes employs a CUP system (CUP1) present in the LIG locus for colonization in the inflamed gut, but not in the oral mucosa. Thus, oral pathobionts likely exploit distinct adaptation mechanisms in their ectopically colonized intestinal niche compared to their native niche.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Klebsiella/genética , Doenças Inflamatórias Intestinais/patologia , Inflamação , Mucosa Bucal
3.
bioRxiv ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38370680

RESUMO

Changes in the gut microbiome have been associated with several human diseases, but the molecular and functional details underlying these associations remain largely unknown. Here, we performed a multi-cohort analysis of small molecule biosynthetic gene clusters (BGCs) in 5,306 metagenomic samples of the gut microbiome from 2,033 Inflammatory Bowel Disease (IBD) patients and 833 matched healthy subjects and identified a group of Clostridia-derived BGCs that are significantly associated with IBD. Using synthetic biology, we discovered and solved the structures of six fatty acid amides as the products of the IBD-enriched BGCs. Using two mouse models of colitis, we show that the discovered small molecules disrupt gut permeability and exacerbate inflammation in chemically and genetically susceptible mice. These findings suggest that microbiome-derived small molecules may play a role in the etiology of IBD and represent a generalizable approach for discovering molecular mediators of microbiome-host interactions in the context of microbiome-associated diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA