Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Anal Chem ; 93(29): 9995-10004, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34241992

RESUMO

Numerous efforts have been made to establish three-dimensional (3D) cell cultures that mimic the structure, cell composition, and functions of actual tissues and organs in vitro; however, owing to its intrinsic complexity, precise characterization of 3D differentiation remains challenging and often results in high variations in the resulting differentiated spheroids. This study reports a 3D Raman mapping-based analytical method that helps us to identify the crucial factors responsible for inducing variability in differentiated stem cell spheroids. Human dental pulp stem cell spheroids were generated at various cell densities using the hanging drop (HD) and molded parafilm-based (MP) methods and were then further subjected to odontogenic differentiation. Thereafter, the 3D cellular differentiation in these spheroids was analyzed based on three different Raman peaks, namely, 960, 1156/1528, and 2935 cm-1, which correspond to hydroxyapatite (HA, odontogenic differentiation marker), ß-carotene (precursor of HA), and proteins/cellular components (cell reference). By correlating such cell differentiation-related peaks and water/medium peaks (3400 cm-1), we discovered that the diffusion of the medium containing various nutrients and differentiation factors was crucial in determining the variations in 3D differentiation of stem cell spheroids. Odontogenic differentiation was majorly induced at the outer shell of HD spheroids (up to ∼20 µm), whereas odontogenic differentiation was markedly induced in MP spheroids (up to 40-50 µm). Considering the challenges associated with high variations in spheroid and organoid differentiation, we conclude that the proposed Raman-based 3D analysis plays a pivotal role in stem cell-based regenerative therapy and drug screening.


Assuntos
Polpa Dentária , Análise Espectral Raman , Diferenciação Celular , Humanos , Esferoides Celulares , Células-Tronco
2.
Small ; 17(15): e2002436, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32954643

RESUMO

In this study, a multifunctional platform that enables the highly efficient formation of 3D multicellular cancer spheroids and precise real-time assessments of the anticancer effects of curcumin in a brain tumor coculture model is reported. A highly conductive gold nanostructure (HCGN) is fabricated to facilitate cancer spheroid formation without using anti-cell adhesion molecules. A neuroblastoma (SH-SY5Y) and glioblastoma (U-87MG) coculture model is generated on HCGN with a specific cell-to-cell ratio (SH-SY5Y: U-87MG = 1:1), and their redox behaviors are successfully measured without destroying the distinct 3D structure of the multicellular spheroids. Using electrochemical signals as an indicator of spheroid viability, the effects of potential anticancer compounds on cocultured spheroids are further assessed. Remarkably, decreased cell viability in 3D spheroids caused by a low concentration of curcumin (30 µM) is detectable using the electrochemical method (29.4%) but not with a conventional colorimetric assay (CCK-8). The detection is repeated more than ten times for both short- (63 h) and long-term cultivation (144 h) without damaging the spheroids, enabling real-time, non-destructive pharmacokinetic analysis of various drug candidates. Therefore, it can be concluded that the hybrid platform is a highly promising, precise, and high-throughput drug screening tool based on 3D cell cultivation.


Assuntos
Neoplasias Encefálicas , Curcumina , Nanoestruturas , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Ouro , Humanos , Esferoides Celulares
3.
Analyst ; 145(2): 675-684, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31803868

RESUMO

Curcumin, which is produced by the medicinal herbaceous plant Curcuma longa, has been widely investigated for use as a potential anticancer drug. In this study, the potential toxicity of curcumin-carrying nanoliposomes (curcumin-NLC) toward human stomach cancer cells (MKN-28) was investigated using a new cell-based electrochemical sensing platform. To satisfy both biocompatibility and electroconductivity of the electrodes, the density of the gold nanostructure and the coating conditions of extracellular matrix proteins (fibronectin and collagen) were optimized. The developed platform enabled the successful adhesion and long-term growth of stomach cancer cells on the chip surface, allowing label-free and real-time monitoring of cell viability in a quantitative manner. According to the electrochemical results, both bare curcumin and curcumin-NLC showed toxicity toward MKN-28 cells in the concentration range of 10-100 µM, which was consistent with the results obtained from a conventional colorimetric method (CCK-8). Remarkably, at a low concentration range (<50 µM), this electrochemical platform determined the decrease in cell viability to be approximately 22.8%, 33.9% and 53.1% in the presence of 10, 30, and 50 µM of curcumin-NLC, respectively, compared with the 1.3%, 18.5%, and 28.1% determined by CCK-8, making it 1.7-2 times more sensitive than the conventional colorimetric assay. Hence, it can be concluded that the newly developed fibronectin-coated electroconductive platform is highly promising as an electrochemical detection tool for the sensitive and precise assessment of the anticancer effects of various food-derived compounds with low toxicity.


Assuntos
Antineoplásicos/farmacologia , Curcumina/farmacologia , Portadores de Fármacos/química , Técnicas Eletroquímicas/métodos , Lipossomos/química , Nanopartículas Metálicas/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Técnicas Eletroquímicas/instrumentação , Eletrodos , Fibronectinas/química , Ouro/química , Humanos , Neoplasias Gástricas/tratamento farmacológico , Compostos de Estanho/química
4.
Int J Mol Sci ; 21(1)2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31888101

RESUMO

Biocompatible platforms, wherein cells attach and grow, are important for controlling cytoskeletal dynamics and steering stem cell functions, including differentiation. Among various components, membrane integrins play a key role in focal adhesion of cells (18-20 nm in size) and are, thus, highly sensitive to the nanotopographical features of underlying substrates. Hence, it is necessary to develop a platform/technique that can provide high flexibility in controlling nanostructure sizes. We report a platform modified with homogeneous nanohole patterns, effective in guiding neurogenesis of mouse neural stem cells (mNSCs). Sizes of nanoholes were easily generated and varied using laser interference lithography (LIL), by changing the incident angles of light interference on substrates. Among three different nanohole patterns fabricated on conductive transparent electrodes, 500 nm-sized nanoholes showed the best performance for cell adhesion and spreading, based on F-actin and lamellipodia/filopodia expression. Enhanced biocompatibility and cell adhesion of these nanohole patterns ultimately resulted in the enhanced neurogenesis of mNSCs, based on the mRNAs expression level of the mNSCs marker and several neuronal markers. Therefore, platforms modified with homogeneous nanohole patterns fabricated by LIL are promising for the precise tuning of nanostructures in tissue culture platforms and useful for controlling various differentiation lineages of stem cells.


Assuntos
Células-Tronco Neurais/citologia , Neurogênese , Técnicas de Cultura de Tecidos/instrumentação , Actinas/metabolismo , Animais , Adesão Celular , Diferenciação Celular , Células Cultivadas , Camundongos , Nanoestruturas , Células-Tronco Neurais/metabolismo , Tamanho da Partícula , Pseudópodes/metabolismo
5.
Sensors (Basel) ; 18(9)2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30134637

RESUMO

Breakthroughs in the biomedical and regenerative therapy fields have led to the influential ability of stem cells to differentiate into specific types of cells that enable the replacement of injured tissues/organs in the human body. Non-destructive identification of stem cell differentiation is highly necessary to avoid losses of differentiated cells, because most of the techniques generally used as confirmation tools for the successful differentiation of stem cells can result in valuable cells becoming irrecoverable. Regarding this issue, recent studies reported that both Raman spectroscopy and electrochemical sensing possess excellent characteristics for monitoring the behavior of stem cells, including differentiation. In this review, we focus on numerous studies that have investigated the detection of stem cell pluripotency and differentiation in non-invasive and non-destructive manner, mainly by using the Raman and electrochemical methods. Through this review, we present information that could provide scientific or technical motivation to employ or further develop these two techniques for stem cell research and its application.


Assuntos
Técnicas Biossensoriais/métodos , Diferenciação Celular , Técnicas Eletroquímicas , Nanotecnologia/métodos , Células-Tronco Pluripotentes/citologia , Análise Espectral Raman , Animais , Humanos
6.
Biochem Biophys Res Commun ; 493(1): 578-584, 2017 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-28867185

RESUMO

Graphene, a typical two-dimensional (2D) material, is known to affect a variety of stem cell behaviors including adhesion, spreading, growth, and differentiation. Here, we report for the first time the effects of four different emerging 2D materials on human adipose-derived mesenchymal stem cells (hADMSCs). Graphene oxide (GO), molybdenum sulfide (MoS2), tungsten sulfide (WS2), and boron nitride (BN) were selected as model two-dimensional materials and were coated on cell-culture substrates by a drop-casting method. Acute toxicity was not observed with any of the four different 2D materials at a low concentration range (<5 µg/ml). Interestingly, the 2D material-modified substrates exhibited a higher cell adhesion, spreading, and proliferation when compared with a non-treated (NT) substrate. Remarkably, in the case of differentiation, the MoS2-, WS2-, and BN-modified substrates exhibited a better performance in terms of guiding the adipogenesis of hADMSCs when compared with both NT and GO-modified substrates, based on the mRNA expression level (qPCR) and amount of lipid droplets (ORO staining). In contrast, the osteogenesis was found to be most efficiently induced by the GO-coated substrate (50 µg/mL) among all 2D-material coated substrates. In summary, 2D materials could act as favorable sources for controlling the stem cell growth and differentiation, which might be highly advantageous in both biomedical research and therapy.


Assuntos
Materiais Biocompatíveis/química , Grafite/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Nicho de Células-Tronco/fisiologia , Alicerces Teciduais , Adesão Celular/fisiologia , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Desenho de Equipamento , Humanos , Teste de Materiais
7.
Adv Sci (Weinh) ; 10(9): e2207084, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737855

RESUMO

Direct detection of cellular redox signals has shown immense potential as a novel living cell analysis tool. However, the origin of such signals remains unknown, which hinders the widespread use of electrochemical methods for cellular research. In this study, the authors found that intracellular metabolic pathways that generate adenosine triphosphate (ATP) are the main contributors to extracellularly detectable electrochemical signals. This is achieved through the detection of living cells (4,706 cells/chip, linearity: 0.985) at a linear range of 7,466-48,866. Based on this discovery, the authors demonstrated that the cellular signals detected by differential pulse voltammetry (DPV) can be rapidly amplified with a developed medium containing metabolic activator cocktails (MACs). The DPV approach combined with MAC treatment shows a remarkable performance to detect the effects of the anticancer drug CPI-613 on cervical cancer both at a low drug concentration (2 µm) and an extremely short treatment time (1 hour). Furthermore, the senescence of mesenchymal stem cells could also be sensitively quantified using the DPV+MAC method even at a low passage number (P6). Collectively, their findings unveiled the origin of redox signals in living cells, which has important implications for the characterization of various cellular functions and behaviors using electrochemical approaches.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Transdução de Sinais
8.
Sci Adv ; 8(16): eabj7736, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35442746

RESUMO

Stable and continuous supply of essential biomolecules is critical to mimic in vivo microenvironments wherein spontaneous generation of various cell types occurs. Here, we report a new platform that enables highly efficient neuronal cell generation of neural stem cells using single metal-organic framework (MOF) nanoparticle-embedded nanopit arrays (SMENA). By optimizing the physical parameters of homogeneous periodic nanopatterns, each nanopit can confine single nMOFs (UiO-67) that are specifically designed for long-term storage and release of retinoic acid (RA). The SMENA platform successfully inhibited physical interaction with cells, which contributed to remarkable stability of the nMOF (RA⊂UiO-67) structure without inducing nanoparticle-mediated toxicity issues. Owing to the continuous and long-term supply of RA, the neural stem cells showed enhanced mRNA expressions of various neurogenesis-related activities. The developed SMENA platform can be applied to other stem cell sources and differentiation lineages and is therefore useful for various stem cell-based regenerative therapies.

9.
Adv Sci (Weinh) ; 9(20): e2200074, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35506260

RESUMO

Organoids that mimic the structural and cellular characteristics of kidneys in vitro have recently emerged as a promising source for biomedical research. However, uncontrollable cellular heterogeneity after differentiation often results in the generation of off-target cells, one of the most challenging issues in organoid research. This study proposes a new method that enables the real-time assessment of kidney organoids derived from stem cells. When placed on a conductive surface, these organoids generate unique electrochemical signals at ≈0.3 V with intensities proportional to the amount of kidney-specific cell types. Off-target cells (i.e., non-kidney cells) produce an electrical signature at 0 V that is distinguishable from other surrounding cell types, enabling non-destructive assessment of both the differentiation, and maturation levels of kidney organoids. The developed platform can be applied to other types of organoids and is thus highly promising as a tool for organoid-based drug screening, toxicity assessment, and therapeutics.


Assuntos
Organoides , Células-Tronco Pluripotentes , Diferenciação Celular , Avaliação Pré-Clínica de Medicamentos , Rim
10.
Biosens Bioelectron ; 178: 113018, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33524704

RESUMO

Stem cell-based therapies have recently emerged to treat various incurable diseases and disorders. Types of stem cell-derived cells and their functions should be intensively analyzed before therapy. However, current pre-treatment steps for biological analysis are mostly destructive. Here, we report a novel optical method that enables ultra-fast and label-free characterization of cells, eliminating invasive, destructive steps. The technique, referred to as "autofluorescence-Raman mapping integration (ARMI)" analysis uses cell autofluorescence (AF) to reveal cellular morphology and cytosolic microstructures, while Raman mapping allows site-specific intensive analysis of target molecules, which enables ultra-fast identification of cell types. We used human mesenchymal stem cells (MSCs) as a model and induced adipogenesis. Lipid droplets in cells appeared as "blanks" in three-dimensional AF images and site-specific Raman mapping guided by AF identified the structure and components of the CH2 stretch. Adipogenesis could be rapidly and precisely analyzed, not only for the same batch but also for different batches. Therefore, the developed tool is highly useful for the accurate screening of stem cell differentiation and implementation in biomedical and clinical applications.


Assuntos
Adipogenia , Técnicas Biossensoriais , Diferenciação Celular , Humanos , Análise Espectral Raman , Células-Tronco
11.
Biomedicines ; 9(1)2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33375330

RESUMO

Electrochemical sensors are considered an auspicious tool to detect biomolecules (e.g., DNA, proteins, and lipids), which are valuable sources for the early diagnosis of diseases and disorders. Advances in electrochemical sensing platforms have enabled the development of a new type of biosensor, enabling label-free, non-destructive detection of viability, function, and the genetic signature of whole cells. Numerous studies have attempted to enhance both the sensitivity and selectivity of electrochemical sensors, which are the most critical parameters for assessing sensor performance. Various nanomaterials, including metal nanoparticles, carbon nanotubes, graphene and its derivatives, and metal oxide nanoparticles, have been used to improve the electrical conductivity and electrocatalytic properties of working electrodes, increasing sensor sensitivity. Further modifications have been implemented to advance sensor platform selectivity and biocompatibility using biomaterials such as antibodies, aptamers, extracellular matrix (ECM) proteins, and peptide composites. This paper summarizes recent electrochemical sensors designed to detect target biomolecules and animal cells (cancer cells and stem cells). We hope that this review will inspire researchers to increase their efforts to accelerate biosensor progress-enabling a prosperous future in regenerative medicine and the biomedical industry.

12.
Adv Healthc Mater ; 9(7): e1901751, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32134570

RESUMO

Research on the 3D culturing of cancer cells that better mimic in vivo solid tumors is important for efficient drug screening. Herein, a new platform that effectively facilitates the formation of cancer spheroids for anticancer drug screening is reported. Cytophilic graphene oxide (GO), when selectively coated on the sidewalls of micro-wells fabricated from a cell-adhesion-resistive polymer, is found to efficiently initiates distinct donut-like formation of cancer cell spheroids. Scanning electron microscopy and Raman mapping are used to analyze vertically coated GO micropatterns (vGO-MPs) of different sizes (100-250 µm) on polymer platforms, and human liver cancer cells (HepG2), as a model cancer, are seeded on these platforms. Remarkably, the 150 µm-sized platform is found to easily and rapidly generate 3D spheroids in the absence of cell-adhesion proteins. In addition, owing to the unique characteristics of GO, vGO-MPs are highly stable for long periods of time (≈1 month), even under harsh conditions (>70 °C). Moreover, the anticancer effects of two drugs (hydroxyurea and cisplatin) and the potential anticancer compound (curcumin) on HepG2 cells are demonstrated by simply measuring decreases in spheroid sizes. Hence, this new platform is highly promising as a cancer spheroid-forming material for rapid drug screening.


Assuntos
Grafite , Neoplasias , Avaliação Pré-Clínica de Medicamentos , Detecção Precoce de Câncer , Humanos , Esferoides Celulares
13.
Colloids Surf B Biointerfaces ; 180: 384-392, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31082776

RESUMO

Precise detection of undifferentiated human pluripotent stem cells (hPSCs) and their entire subsequent elimination are incredibly important in preventing teratoma formations after transplantation. Recently, electrochemical sensing platforms have demonstrated immense potential as a new tool to detect remaining hPSCs in label-free and non-destructive manner. Nevertheless, one of the critical huddles of this electrochemical sensing approach is its low sensitivity since even low concentrations of remaining hPSCs were reported to form teratoma once transplanted. To address this issue, in this study, we report an engineering-based approach to improve the sensitivity of electrochemical sensing platform for hPSC detection. By optimizing the density of gold nanostructure and the matrigel concentration to improve both electro-catalytic property and biocompatibility, the sensitivity of the developed platform toward hESCs detection could reach 12,500 cells/chip, which is close to the known critical concentration of hPSCs (˜10,000 cells) that induce teratoma formation in vivo. Remarkably, the electrochemical signals were not detectable from other types of stem cell-derived endothelial cells (CB-EPCs) even at high concentrations of CB-EPCs (40,000 cells/chip), proving the high selectivity of the developed platform toward hPSC detection. Hence, the developed platform could be highly useful to solve the safety issues that are related with clinical application of hPSC-derived cells.


Assuntos
Eletroquímica/métodos , Ouro/química , Células-Tronco Embrionárias Humanas/citologia , Nanoestruturas/química , Eletrodos , Células Endoteliais/citologia , Sangue Fetal/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Nanoestruturas/ultraestrutura , Compostos de Estanho/química
14.
Biomaterials ; 154: 223-233, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29132047

RESUMO

Precise characterizations of stem cell differentiation into specific lineages, especially in non-destructive and non-invasive manner, are extremely important for generating patient-specific cells without mass loss of differentiated cells. Here, we report a new method capable of in situ label-free quantification of stem cell differentiation into multiple lineages, even at a single cell level. The human adipose-derived mesenchymal stem cells (hADMSCs) were first differentiated into two different types of cells (osteoblasts and adipocytes) and these differentiated cells were then intensively analyzed by micro-Raman spectroscopy. Interestingly, the Raman peaks assigned to lipid droplets and hydroxyapatite were found to be highly specific to the adipocyte (fat cell) and osteoblast (bone cell) and were thus found to be useful for generating label-free single cell Raman images in combination with CH3 (2935 cm-1) peaks for visualizing cell shape. Remarkably, based on these Raman images, we found that the osteogenesis of hADMSCs could be determined and quantified after 9 days of differentiation, which is a week earlier than with the typical alizarin red staining method. In the case of adipogenesis, the increase of lipid droplets in the cytoplasm at the single cell level could be clearly visualized and detected during the entire period of adipogenesis, which is impossible using any other currently available methods such as Oil Red O and immunostaining. Hence, the new method reported in this study is highly promising as an analytical tool for precise in-situ monitoring of stem cell differentiation, and could facilitate the use of stem cell-based materials for the regenerative therapies.


Assuntos
Tecido Adiposo/citologia , Diferenciação Celular , Linhagem da Célula , Células-Tronco Mesenquimais/citologia , Humanos , Osteogênese , Análise Espectral Raman , Coloração e Rotulagem , Fatores de Tempo
15.
Biomater Res ; 22: 10, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29619243

RESUMO

BACKGROUND: In the past decade, stem cells, with their ability to differentiate into various types of cells, have been proven to be resourceful in regenerative medicine and tissue engineering. Despite the ability to repair damaged parts of organs and tissues, the use of stem cells still entails several limitations, such as low differentiation efficiency and difficulties in guiding differentiation. To address these limitations, nanotechnology approaches have been recently implemented in stem cell research. It has been discovered that stem cells, in combination with carbon-based functional materials, show enhanced regenerative performances in varying biophysical conditions. In particular, several studies have reported solutions to the conventional quandaries in biomedical engineering, using synergetic effects of nanohybrid materials, as well as further development of technologies to recover from diverse health conditions such as bone fracture and strokes. MAIN TEXT: In this review, we discuss several prior studies regarding the application of various nanomaterials in controlling the behavior of stem cells. We focus on the potential of different types of nanomaterials, such as two-dimensional materials, gold nanoparticles, and three-dimensional nanohybrid composites, to control the differentiation of human mesenchymal stem cells (hMSCs). These materials have been found to affect stem cell functions via the adsorption of growth/differentiation factors on the surfaces of nanomaterials and the activation of signaling pathways that are mostly related to cell adhesion and differentiation (e.g., FAK, Smad, Erk, and Wnt). CONCLUSION: Controlling stem cell differentiation using biophysical factors, especially the use of nanohybrid materials to functionalize underlying substrates wherein the cells attach and grow, is a promising strategy to achieve cells of interest in a highly efficient manner. We hope that this review will facilitate the use of other types of newly discovered and/or synthesized nanomaterials (e.g., metal transition dichalcogenides, non-toxic quantum dots, and metal oxide frameworks) for stem cell-based regenerative therapies.

16.
Nano Converg ; 4(1): 2, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28191446

RESUMO

In the field of regenerative medicine, stem cells are highly promising due to their innate ability to generate multiple types of cells that could replace/repair damaged parts of human organs and tissues. It has been reported that both in vitro and in vivo function/survival of stem cells could significantly be improved by utilizing functional materials such as biodegradable polymers, metal composites, nanopatterns and nanohybrid particles. Of various biocompatible materials available for use in stem cell-based therapy and research, carbon-based materials-including fullerenes graphene/graphene oxide and carbon nanotubes-have been found to possess unique physicochemical characteristics that contribute to the effective guidance of stem cell differentiation into specific lineages. In this review, we discuss a number of previous reports that investigated the use of carbon-based materials to control stem cell behavior, with a particular focus on their immense potential to guide the osteogenesis of mesenchymal stem cells (MSCs). We hope that this review will provide information on the full potential of using various carbon-based materials in stem cell-mediated regenerative therapy, particularly for bone regeneration and repair.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA