Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36236535

RESUMO

Recent studies matching eye gaze patterns with those of others contain research that is heavily reliant on string editing methods borrowed from early work in bioinformatics. Previous studies have shown string editing methods to be susceptible to false negative results when matching mutated genes or unordered regions of interest in scanpaths. Even as new methods have emerged for matching amino acids using novel combinatorial techniques, scanpath matching is still limited by a traditional collinear approach. This approach reduces the ability to discriminate between free viewing scanpaths of two people looking at the same stimulus due to the heavy weight placed on linearity. To overcome this limitation, we here introduce a new method called SoftMatch to compare pairs of scanpaths. SoftMatch diverges from traditional scanpath matching in two different ways: firstly, by preserving locality using fractal curves to reduce dimensionality from 2D Cartesian (x,y) coordinates into 1D (h) Hilbert distances, and secondly by taking a combinatorial approach to fixation matching using discrete Fréchet distance measurements between segments of scanpath fixation sequences. These matching "sequences of fixations over time" are a loose acronym for SoftMatch. Results indicate high degrees of statistical and substantive significance when scoring matches between scanpaths made during free-form viewing of unfamiliar stimuli. Applications of this method can be used to better understand bottom up perceptual processes extending to scanpath outlier detection, expertise analysis, pathological screening, and salience prediction.


Assuntos
Fixação Ocular , Fractais , Aminoácidos , Humanos
2.
Cancers (Basel) ; 15(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37568660

RESUMO

Radiomics is a rapidly evolving field that involves extracting and analysing quantitative features from medical images, such as computed tomography or magnetic resonance images. Radiomics has shown promise in brain tumor diagnosis and patient-prognosis prediction by providing more detailed and objective information about tumors' features than can be obtained from the visual inspection of the images alone. Radiomics data can be analyzed to determine their correlation with a tumor's genetic status and grade, as well as in the assessment of its recurrence vs. therapeutic response, among other features. In consideration of the multi-parametric and high-dimensional space of features extracted by radiomics, machine learning can further improve tumor diagnosis, treatment response, and patients' prognoses. There is a growing recognition that tumors and their microenvironments (habitats) mutually influence each other-tumor cells can alter the microenvironment to increase their growth and survival. At the same time, habitats can also influence the behavior of tumor cells. In this systematic review, we investigate the current limitations and future developments in radiomics and machine learning in analysing brain tumors and their habitats.

3.
Sci Rep ; 12(1): 4381, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35288583

RESUMO

In recent years, the nuclear power plant has received huge attention as it generates vast amounts of power at a lower cost. However, its creation of radioactive wastes is a major environmental concern. Therefore, the nuclear power plant requires a reliable and uninterrupted monitoring system as an essential part of it. Monitoring a nuclear power plant using wireless sensor networks is a convenient and popular practice now. This paper proposes a hybrid approach for monitoring wireless sensor networks in the context of a nuclear power plant in Bangladesh. Our hybrid approach enhances the lifespan of wireless sensor networks reducing power consumption and offering better connectivity of sensors. To do so, it uses both the topology maintenance and topology construction algorithms. We found that the HGETRecRot topology maintenance algorithm enhances the network lifetime compared to other algorithms. This algorithm increases the communication and sensing coverage area but decreases the network performance. We also propose a prediction model, based on linear regression algorithm, that predicts the best combination of topology maintenance and topology construction algorithms.


Assuntos
Redes de Comunicação de Computadores , Tecnologia sem Fio , Algoritmos , Longevidade , Centrais Nucleares
4.
PLoS One ; 16(12): e0260717, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34855867

RESUMO

INTRODUCTION: Eye-tracking research has been widely used in radiology applications. Prior studies exclusively analysed either temporal or spatial eye-tracking features, both of which alone do not completely characterise the spatiotemporal dynamics of radiologists' gaze features. PURPOSE: Our research aims to quantify human visual search dynamics in both domains during brain stimuli screening to explore the relationship between reader characteristics and stimuli complexity. The methodology can be used to discover strategies to aid trainee radiologists in identifying pathology, and to select regions of interest for machine vision applications. METHOD: The study was performed using eye-tracking data 5 seconds in duration from 57 readers (15 Brain-experts, 11 Other-experts, 5 Registrars and 26 Naïves) for 40 neuroradiological images as stimuli (i.e., 20 normal and 20 pathological brain MRIs). The visual scanning patterns were analysed by calculating the fractal dimension (FD) and Hurst exponent (HE) using re-scaled range (R/S) and detrended fluctuation analysis (DFA) methods. The FD was used to measure the spatial geometrical complexity of the gaze patterns, and the HE analysis was used to measure participants' focusing skill. The focusing skill is referred to persistence/anti-persistence of the participants' gaze on the stimulus over time. Pathological and normal stimuli were analysed separately both at the "First Second" and full "Five Seconds" viewing duration. RESULTS: All experts were more focused and a had higher visual search complexity compared to Registrars and Naïves. This was seen in both the pathological and normal stimuli in the first and five second analyses. The Brain-experts subgroup was shown to achieve better focusing skill than Other-experts due to their domain specific expertise. Indeed, the FDs found when viewing pathological stimuli were higher than those in normal ones. Viewing normal stimuli resulted in an increase of FD found in five second data, unlike pathological stimuli, which did not change. In contrast to the FDs, the scanpath HEs of pathological and normal stimuli were similar. However, participants' gaze was more focused for "Five Seconds" than "First Second" data. CONCLUSIONS: The HE analysis of the scanpaths belonging to all experts showed that they have greater focus than Registrars and Naïves. This may be related to their higher visual search complexity than non-experts due to their training and expertise.


Assuntos
Encéfalo/diagnóstico por imagem , Tecnologia de Rastreamento Ocular , Imageamento por Ressonância Magnética , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Radiologistas/psicologia , Análise Espacial , Fatores de Tempo , Percepção Visual/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA