Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(7): e2306993121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38315848

RESUMO

Puromycin is covalently added to the nascent chain of proteins by the peptidyl transferase activity of the ribosome and the dissociation of the puromycylated peptide typically follows this event. It was postulated that blocking the translocation of the ribosome with emetine could retain the puromycylated peptide on the ribosome, but evidence against this has recently been published [Hobson et al., Elife 9, e60048 (2020); and Enam et al., Elife 9, e60303 (2020)]. In neurons, puromycylated nascent chains remain in the ribosome even in the absence of emetine, yet direct evidence for this has been lacking. Using biochemistry and cryoelectron microscopy, we show that the puromycylated peptides remain in the ribosome exit channel in the large subunit in a subset of neuronal ribosomes stalled in the hybrid state. These results validate previous experiments to localize stalled polysomes in neurons and provide insight into how neuronal ribosomes are stalled. Moreover, in these hybrid-state neuronal ribosomes, anisomycin, which usually blocks puromycylation, competes poorly with puromycin in the puromycylation reaction, allowing a simple assay to determine the proportion of nascent chains that are stalled in this state. In early hippocampal neuronal cultures, over 50% of all nascent peptides are found in these stalled polysomes. These results provide insights into the stalling mechanisms of neuronal ribosomes and suggest that puromycylated peptides can be used to reveal subcellular sites of hybrid-state stalled ribosomes in neurons.


Assuntos
Emetina , Ribossomos , Puromicina/farmacologia , Microscopia Crioeletrônica , Emetina/análise , Emetina/metabolismo , Ribossomos/metabolismo , Biossíntese de Proteínas , Peptídeos/metabolismo , Neurônios/metabolismo
2.
J Neurosci ; 43(14): 2440-2459, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36849416

RESUMO

Local translation in neurons is partly mediated by the reactivation of stalled polysomes. Stalled polysomes may be enriched within the granule fraction, defined as the pellet of sucrose gradients used to separate polysomes from monosomes. The mechanism of how elongating ribosomes are reversibly stalled and unstalled on mRNAs is still unclear. In the present study, we characterize the ribosomes in the granule fraction using immunoblotting, cryogenic electron microscopy (cryo-EM), and ribosome profiling. We find that this fraction, isolated from 5-d-old rat brains of both sexes, is enriched in proteins implicated in stalled polysome function, such as the fragile X mental retardation protein (FMRP) and Up-frameshift mutation 1 homologue. Cryo-EM analysis of ribosomes in this fraction indicates they are stalled, mainly in the hybrid state. Ribosome profiling of this fraction reveals (1) an enrichment for footprint reads of mRNAs that interact with FMRPs and are associated with stalled polysomes, (2) an abundance of footprint reads derived from mRNAs of cytoskeletal proteins implicated in neuronal development, and (3) increased ribosome occupancy on mRNAs encoding RNA binding proteins. Compared with those usually found in ribosome profiling studies, the footprint reads were longer and were mapped to reproducible peaks in the mRNAs. These peaks were enriched in motifs previously associated with mRNAs cross-linked to FMRP in vivo, independently linking the ribosomes in the granule fraction to the ribosomes associated with FMRP in the cell. The data supports a model in which specific sequences in mRNAs act to stall ribosomes during translation elongation in neurons.SIGNIFICANCE STATEMENT Neurons send mRNAs to synapses in RNA granules, where they are not translated until an appropriate stimulus is given. Here, we characterize a granule fraction obtained from sucrose gradients and show that polysomes in this fraction are stalled on consensus sequences in a specific state of translational arrest with extended ribosome-protected fragments. This finding greatly increases our understanding of how neurons use specialized mechanisms to regulate translation and suggests that many studies on neuronal translation may need to be re-evaluated to include the large fraction of neuronal polysomes found in the pellet of sucrose gradients used to isolate polysomes.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Ribossomos , Animais , Feminino , Masculino , Ratos , Grânulos de Ribonucleoproteínas Citoplasmáticas/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Polirribossomos , Biossíntese de Proteínas , Ribossomos/metabolismo , RNA Mensageiro/metabolismo
3.
Small ; 20(11): e2308209, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37880867

RESUMO

Orientation guidance has shown its cutting edges in electrodeposition modulation to promote Zn anode stability toward commercialized standards. Nevertheless, large-scale orientational deposition is handicapped by the competition between Zn-ion reduction and mass transfer. Herein, a holistic electrolyte additive protocol is put forward via incorporating bio-derived dextrin molecules into a zinc sulfate electrolyte bath. Electrochemical tests in combination with molecular dynamics simulations demonstrate the alleviation of concentration polarization throughout accelerating Zn2+ diffusion and retarding their reduction. The predominant (101) texture on inert current collectors (i.e., Cu, Ti, and stainless steel) and (101)/(002) textures on Zn foils afford homogeneous electrical field distribution, which is contributed by the work difference to form the 2D nucleus and the adsorption of dextrin molecules, respectively. Consequently, the symmetric cell harvests a longevous cycling lifespan of over 4000 h at 0.5 mA cm-2 /0.5 mAh cm-2 while the Zn@Cu electrode sustains for 240 h at a high depth of discharge of 40%.

4.
Small ; 20(9): e2304534, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37849036

RESUMO

The receptor binding domain (RBD) of the SARS-CoV-2 Spike (S) glycoprotein is an appealing immunogen, but associated vaccine approaches must overcome the hapten-like nature of the compact protein and adapt to emerging variants with evolving RBD sequences. Here, a vaccine manufacturing methodology is proposed comprising a sterile-filtered freeze-dried lipid cake formulation that can be reconstituted with liquid proteins to instantaneously form liposome-displayed protein nanoparticles. Mannitol is used as a bulking agent and a small amount of Tween-80 surfactant is required to achieve reconstituted submicron particles that do not precipitate prior to usage. The lipid particles include an E. coli-derived monophosphoryl lipid A (EcML) for immunogenicity, and cobalt porphyrin-phospholipid (CoPoP) for antigen display. Reconstitution of the lipid cake with aqueous protein results in rapid conversion of the RBD into intact liposome-bound format prior to injection. Protein particles can readily be formed with sequent-divergent RBD proteins derived from the ancestral or Omicron strains. Immunization of mice elicits antibodies that neutralize respective viral strains. When K18-hACE2 transgenic mice are immunized and challenged with ancestral SARS-CoV-2 or the Omicron BA.5 variant, both liquid liposomes displaying the RBD and rapid reconstituted particles protect mice from infection, as measured by the viral load in the lungs and nasal turbinates.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Camundongos , Nanovacinas , SARS-CoV-2 , Escherichia coli , Lipossomos , COVID-19/prevenção & controle , Lipídeos
5.
Scand J Med Sci Sports ; 34(1): e14521, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37815004

RESUMO

OBJECTIVE: This longitudinal study aimed to investigate the effects of Qigong on the anxiety state, heart rate variability (HRV), and breathing of anxious college students. METHODS: A total of 37 individuals (18-25 years old) were randomly allocated to the control (n = 19) and intervention (n = 18) groups. Qigong interventions were conducted five times weekly for 12 weeks, with each session lasting 60 min. Hamilton Anxiety Scale, Fatigue Scale 14, Pittsburgh Sleep Quality Index, and 36-item Short Form Survey, HRV, and respiration data were collected before and after the 3-month intervention. RESULTS: Individuals who participated in the three-month Qigong exercise intervention showed a significant reduction in anxiety, particularly mental anxiety (p < 0.05). Subjects in the intervention group presented a decrease in skin temperature (p < 0.05) and an increase in blood volume pulsation (p < 0.05). Meanwhile, HRV exhibited a significant increase in the standard deviation of interbeat interval before and after comparisons (p < 0.05) and between the two groups (p = 0.039) and a reduction in the normalized low-frequency power after the intervention. Moreover, the intervention group experienced increased abdominal breathing depth and abdominal breathing per minute (p < 0.05). CONCLUSION: These findings indicate that Qigong is an effective mind-body exercise strategy for relieving anxiety. HRV and breathing were improved accordingly among college students after the completion of the 3-month Qigong program.


Assuntos
Qigong , Adolescente , Adulto , Humanos , Adulto Jovem , Ansiedade/prevenção & controle , Frequência Cardíaca/fisiologia , Estudos Longitudinais , Respiração , Estudantes
6.
BMC Musculoskelet Disord ; 25(1): 343, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693479

RESUMO

PURPOSE: To explore whether it is necessary to put drain tubes after posterior pedicle screw fixation of thoracolumbar fractures. METHODS: From April 2020 to January 2023, a total of 291 patients with recent thoracolumbar fractures (AO type-A or type-B) who received the pedicle screw fixation operation were enrolled retrospectively. In 77 patients, drain tubes were used in the pedicle screw fixation surgery, while no drain tubes were placed in the other group. After gleaning demographic information and results of lab examination and imageology examination, all data were put into a database. Independent-sample t-tests, Pearson Chi-Square tests, Linear regression analysis, and correlation analysis were then performed. RESULTS: Compared to the control group, the drainage group had significantly lower postoperative CRP levels (P = 0.047), less use of antipyretics (P = 0.035), higher ADL scores (P = 0.001), and lower NRS scores (P < 0.001) on the 6th day after surgery. Other investigation items, such as demographic information, operation time, intraoperative blood loss, body temperature, and other preoperative and postoperative lab results, showed no significant differences. CONCLUSIONS: The use of a drain tube in the pedicle screw fixation of thoracolumbar fractures is correlated with the improvement of patients' living and activity ability and the reduction of inflammation, postoperative fever and pain.


Assuntos
Drenagem , Fixação Interna de Fraturas , Vértebras Lombares , Parafusos Pediculares , Fraturas da Coluna Vertebral , Vértebras Torácicas , Humanos , Masculino , Vértebras Torácicas/cirurgia , Vértebras Torácicas/lesões , Fraturas da Coluna Vertebral/cirurgia , Fraturas da Coluna Vertebral/diagnóstico por imagem , Vértebras Lombares/cirurgia , Vértebras Lombares/lesões , Feminino , Estudos Retrospectivos , Adulto , Pessoa de Meia-Idade , Fixação Interna de Fraturas/instrumentação , Fixação Interna de Fraturas/métodos , Fixação Interna de Fraturas/efeitos adversos , Drenagem/instrumentação , Drenagem/métodos , Resultado do Tratamento , Idoso
7.
Biochem Genet ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902482

RESUMO

With the emergence of combined surgical treatments, complemented by radiotherapy and chemotherapy, survival rates for esophageal cancer patients have improved, but the overall 5-year survival rate remains low. Therefore, there is an urgent need for further research into the pathogenesis of esophageal cancer and the development of effective prevention, diagnosis, and treatment methods. We initially utilized the GeneCards and DisGeNET databases to identify the esophageal cancer-associated gene WWOX (WW domain containing oxidoreductase). Subsequently, we employed RT-qPCR (Reverse transcription-quantitative PCR) and WB (western blot) to investigate the differential expression of WWOX in HEEC (human esophageal endotheliocytes) and various ESCC (esophageal squamous cell carcinoma) cell lines. We further evaluated alterations in cell proliferation, migration and apoptosis via CCK8 (cell counting kit-8) and clonal formation, Transwell assays and flow cytometry. Additionally, we investigated changes in protein expressions related to the Hippo signaling pathway (YAP/TEAD) through RT-qPCR and WB. Lastly, to further elucidate the regulatory mechanism of WWOX in ESCC, we performed exogenous YAP rescue experiments in ESCC cells with WWOX overexpression to investigate the alterations in apoptosis and proliferation. Results indicated that the expression of WWOX in ESCC was significantly downregulated. Subsequently, upon overexpression of WWOX, ESCC cell proliferation and migration decreased, while apoptosis increased. Additionally, the expression of YAP and TEAD were reduced. However, the sustained overexpression of YAP attenuated the inhibitory effects of WWOX on ESCC cell malignancy. In conclusion, WWOX exerts inhibitory effects on the proliferation and migration of ESCC and promotes apoptosis by suppressing the Hippo signaling pathway. These findings highlight the potential of WWOX as a novel target for the diagnosis and treatment of esophageal cancer.

8.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339108

RESUMO

We developed the Stem Cell Educator therapy among multiple clinical trials based on the immune modulations of multipotent cord blood-derived stem cells (CB-SCs) on different compartments of immune cells, such as T cells and monocytes/macrophages, in type 1 diabetes and other autoimmune diseases. However, the effects of CB-SCs on the B cells remained unclear. To better understand the molecular mechanisms underlying the immune education of CB-SCs, we explored the modulations of CB-SCs on human B cells. CB-SCs were isolated from human cord blood units and confirmed by flow cytometry with different markers for their purity. B cells were purified by using anti-CD19 immunomagnetic beads from human peripheral blood mononuclear cells (PBMCs). Next, the activated B cells were treated in the presence or absence of coculture with CB-SCs for 7 days before undergoing flow cytometry analysis of phenotypic changes with different markers. Reverse transcription-polymerase chain reaction (RT-PCR) was utilized to evaluate the levels of galectin expressions on CB-SCs with or without treatment of activated B cells in order to find the key galectin that was contributing to the B-cell modulation. Flow cytometry demonstrated that the proliferation of activated B cells was markedly suppressed in the presence of CB-SCs, leading to the downregulation of immunoglobulin production from the activated B cells. Phenotypic analysis revealed that treatment with CB-SCs increased the percentage of IgD+CD27- naïve B cells, but decreased the percentage of IgD-CD27+ switched B cells. The transwell assay showed that the immune suppression of CB-SCs on B cells was dependent on the galectin-9 molecule, as confirmed by the blocking experiment with the anti-galectin-9 monoclonal antibody. Mechanistic studies demonstrated that both calcium levels of cytoplasm and mitochondria were downregulated after the treatment with CB-SCs, causing the decline in mitochondrial membrane potential in the activated B cells. Western blot exhibited that the levels of phosphorylated Akt and Erk1/2 signaling proteins in the activated B cells were also markedly reduced in the presence of CB-SCs. CB-SCs displayed multiple immune modulations on B cells through the galectin-9-mediated mechanism and calcium flux/Akt/Erk1/2 signaling pathways. The data advance our current understanding of the molecular mechanisms underlying the Stem Cell Educator therapy to treat autoimmune diseases in clinics.


Assuntos
Doenças Autoimunes , Leucócitos Mononucleares , Humanos , Sangue Fetal , Cálcio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doenças Autoimunes/metabolismo , Células-Tronco/metabolismo , Galectinas/metabolismo
9.
Small ; 19(46): e2304880, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37452439

RESUMO

Porous noble metal nanoparticles have received particular attention recently for their unique optical, thermal, and catalytic functions in biomedicine. However, limited progress has been made to synthesize such porous metallic nanostructures with large mesopores (≥25 nm). Here, a green yet facile synthesis strategy using biocompatible liposomes as templates to mediate the formation of mesoporous metallic nanostructures in a controllable fashion is reported. Various monodispersed nanostructures with well-defined mesoporous shape and large mesopores (≈ 40 nm) are successfully synthesized from mono- (Au, Pd, and Pt), bi- (AuPd, AuPt, AuRh, PtRh, and PdPt), and tri-noble metals (AuPdRh, AuPtRh, and AuPdPt). Along with a successful demonstration of its effectiveness in synthesis of various mesoporous nanostructures, the possible mechanism of liposome-guided formation of such nanostructures via time sectioning of the synthesis process (monitoring time-resolved growth of mesoporous structures) and computational quantum molecular modeling (analyzing chemical interaction energy between metallic cations and liposomes at the enthalpy level) is also revealed. These mesoporous metallic nanostructures exhibit a strong photothermal effect in the near-infrared region, effective catalytic activities in hydrogen peroxide decomposition reaction, and high drug loading capacity. Thus, the liposome-templated method provides an inspiring and robust avenue to synthesize mesoporous noble metal-based nanostructures for versatile biomedical applications.


Assuntos
Lipossomos , Nanoestruturas , Nanoestruturas/química , Metais/química
10.
Bioconjug Chem ; 34(8): 1467-1476, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37499133

RESUMO

A series of generation 3-5 dendrons based on a bis(2,2-hydroxymethylpropionic acid) (bis-MPA) scaffold bearing three respective lengths of linear poly(ethylene glycol) at their periphery and a dibenzocyclooctyne unit at their core was prepared. These dendrons were appended to the surface of azide-decorated α-chymotrypsin (α-CT) via strain-promoted azide-alkyne cycloaddition to yield a library of dendron-protein conjugates. These conjugates were characterized by FT-IR and NMR spectroscopy and were imaged using cryo-electron microscopy. The activity of the PEGylated α-CT-dendron conjugates was investigated using a small molecule (benzoyl-l-tyrosine p-nitroanilide) as well as different proteins of different sizes and crystallinities (casein and bovine serum albumin) as substrates. It was found that the activity of the conjugates toward the small molecule was largely retained, while the activity toward the proteins was significantly diminished. Furthermore, the results indicate that for most of the conjugates the PEG length had a more pronounced impact on enzyme activity than the dendron generation. Overall, the highest sieving ratios were found for α-CT-dendron conjugates decorated with G3-PEG2000, G4-PEG2000, and G5-PEG1000, with the latter two structures offering the best combination of sieving ratio and small molecule activity.


Assuntos
Dendrímeros , Dendrímeros/química , Microscopia Crioeletrônica , Azidas , Espectroscopia de Infravermelho com Transformada de Fourier , Polietilenoglicóis/química
11.
Biomacromolecules ; 24(5): 2278-2290, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37071718

RESUMO

Advanced multifunctional biomaterials are increasingly relying on clinically dictated patterns of selectivity against various biological targets. Integration of these frequently conflicting features into a single material surface may be best achieved by combining various complementary methodologies. Herein, a drug with a broad spectrum of activity, i.e., 4-methylumbelliferone (4-MU), is synthetically multimerized into water-soluble anionic macromolecules with the polyphosphazene backbone. The polymer structure, composition, and solution behavior are studied by 1H and 31P NMR spectroscopy, size-exclusion chromatography, dynamic light scattering, and UV and fluorescence spectrophotometry. To take advantage of the clinically proven hemocompatibility of fluorophosphazene surfaces, the drug-bearing macromolecule was then nanoassembled onto the surface of selected substrates in an aqueous solution with fluorinated polyphosphazene of the opposite charge using the layer-by-layer (LbL) technique. Nanostructured 4-MU-functionalized fluoro-coatings exhibited a strong antiproliferative effect on vascular smooth muscle cells (VSMCs) and fibroblasts with no cytotoxicity against endothelial cells. This selectivity pattern potentially provides the opportunity for highly desirable fast tissue healing while preventing the overgrowth of VSMCs and fibrosis. Taken together with the established in vitro hemocompatibility and anticoagulant activity, 4-MU-functionalized fluoro-coatings demonstrate potential for applications as restenosis-resistant coronary stents and artificial joints.


Assuntos
Células Endoteliais , Himecromona , Himecromona/farmacologia , Propriedades de Superfície , Polímeros/farmacologia , Materiais Revestidos Biocompatíveis/química
12.
Clin Exp Hypertens ; 45(1): 2150204, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36540929

RESUMO

BACKGROUND: Previous studies have demonstrated that the triglyceride-glucose (TyG) index is significantly associated with vascular damage. Albuminuria is a marker of hypertension-mediated organ damage (HMOD) and has been linked to a greater risk of cardiovascular disease (CVD). However, the association between the TyG index and albuminuria in patients with hypertension is not clear. This population research focused on subjects with hypertension to investigate the association between an elevated TyG index and albuminuria. METHODS: From September 2019 to November 2019, 789 hypertensive participants were involved in our research. Logistic regression models were performed to estimate the odds ratios (ORs) and 95% confidence intervals (CIs) for albuminuria according to the quartiles of the TyG index. RESULTS: Multivariate logistic regression analysis revealed that the TyG index was significantly associated with albuminuria. Using the lowest TyG index quartile as the reference, the fully adjusted ORs (95% CIs) for albuminuria for TyG index quartile II, quartile III, and quartile IV were 1.90 (1.17-3.12), 1.81 (1.07-3.07), and 3.46 (2.06-5.91), respectively. The results in the subgroup analysis were similar to the main analyses except for the smokers. Restricted cubic spline curves based on logistic regression models evaluated the linear association between the TyG index and albuminuria (P for nonlinear = 0.831). CONCLUSION: The TyG index was positively associated with albuminuria among hypertensive participants.


Assuntos
Doenças Cardiovasculares , Hipertensão , Humanos , Albuminúria , Hipertensão/complicações , Glucose , Triglicerídeos , Glicemia , Fatores de Risco , Biomarcadores
13.
Ecotoxicol Environ Saf ; 267: 115564, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37890248

RESUMO

The use of Advance Oxidation Process (AOPs) has been extensively examined in order to eradicate organic pollutants. This review assesses the efficacy of photolysis, O3 based (O3/UV, O3/H2O2, O3/H2O2/UV, H2O2/UV, Fenton, Fenton-like, hetero-system) and sonochemical and electro-oxidative AOPs in this regard. The main purpose of this review and some suggestions for the advancement of AOPs is to facilitate the elimination of toxic organic pollutants. Initially proposed for the purification of drinking water in 1980, AOPs have since been employed for various wastewater treatments. AOPs technologies are essentially a process intensification through the use of hybrid methods for wastewater treatment, which generate large amounts of hydroxyl (•OH) and sulfate (SO4·-) radicals, the ultimate oxidants for the remediation of organic pollutants. This review covers the use of AOPs and ozone or UV treatment in combination to create a powerful method of wastewater treatment. This novel approach has been demonstrated to be highly effective, with the acceleration of the oxidation process through Fenton reaction and photocatalytic oxidation technologies. It is clear that Advance Oxidation Process are a helpful for the degradation of organic toxic compounds. Additionally, other processes such as •OH and SO4·- radical-based oxidation may also arise during AOPs treatment and contribute to the reduction of target organic pollutants. This review summarizes the current development of AOPs treatment of wastewater organic pollutants.


Assuntos
Poluentes Ambientais , Radical Hidroxila , Peróxido de Hidrogênio , Águas Residuárias , Oxirredução
14.
Nano Lett ; 22(8): 3364-3371, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35404058

RESUMO

Remote heteroepitaxy is known to yield semiconductor films with better quality. However, the atomic mechanisms in systems with large mismatches are still unclear. Herein, low-strain single-crystalline nitride films are achieved on highly mismatched (∼16.3%) sapphire via graphene-assisted remote heteroepitaxy. Because of a weaker interface potential, the in-plane compressive strain at the interface releases by 30%, and dislocations are prevented. Meanwhile, the lattice distortions in the epilayer disappear when the structure climbs over the atomic steps on substrates because graphene renders the steps smooth. In this way, the density of edge dislocations in as-grown nitride films reduces to the same level as that of the screw dislocations, which is rarely observed in heteroepitaxy. Further, the indium composition in InxGa1-xN/GaN multiquantum wells increases to ∼32%, enabling the fabrication of a yellow light-emitting diode. This study demonstrates the advantages of remote heteroepitaxy for bandgap tuning and opens opportunities for photoelectronic and electronic applications.

15.
Angew Chem Int Ed Engl ; 62(10): e202218454, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36624050

RESUMO

Despite conspicuous merits of Zn metal anodes, the commercialization is still handicapped by rampant dendrite formation and notorious side reaction. Manipulating the nucleation mode and deposition orientation of Zn is a key to rendering stabilized Zn anodes. Here, a dual electrolyte additive strategy is put forward via the direct cooperation of xylitol (XY) and graphene oxide (GO) species into typical zinc sulfate electrolyte. As verified by molecular dynamics simulations, the incorporated XY molecules could regulate the solvation structure of Zn2+ , thus inhibiting hydrogen evolution and side reactions. The self-assembled GO layer is in favor of facilitating the desolvation process to accelerate reaction kinetics. Progressive nucleation and orientational deposition can be realized under the synergistic modulation, enabling a dense and uniform Zn deposition. Consequently, symmetric cell based on dual additives harvests a highly reversible cycling of 5600 h at 1.0 mA cm-2 /1.0 mAh cm-2 .

16.
BMC Genomics ; 23(1): 218, 2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35305558

RESUMO

BACKGROUND: Colocasia gigantea, Caladium bicolor and Xanthosoma sagittifolium are three worldwide famous ornamental and/or vegetable plants in the Araceae family, these species in the subfamily Aroideae are phylogenetically perplexing due to shared interspecific morphological traits and variation. RESULT: This study, for the first time ever, assembled and analyzed complete chloroplast genomes of C. gigantea, C. bicolor and X. sagittifolium with genome sizes of 165,906 bp, 153,149 bp and 165,169 bp in length, respectively. The genomes were composed of conserved quadripartite circular structures with a total of 131 annotated genes, including 8 rRNA, 37 tRNA and 86 protein-coding genes. A comparison within Aroideae showed seven protein-coding genes (accD, ndhF, ndhK, rbcL, rpoC1, rpoC2 and matK) linked to environmental adaptation. Phylogenetic analysis confirmed a close relationship of C. gigantea with C. esculenta and S. colocasiifolia, and the C. bicolor with X. sagittifolium. Furthermore, three DNA barcodes (atpH-atpI + psaC-ndhE, atpH-atpI + trnS-trnG, atpH-atpI + psaC-ndhE + trnS-trnG) harbored highly variable regions to distinguish species in Aroideae subfamily. CONCLUSION: These results would be beneficial for species identification, phylogenetic relationship, genetic diversity, and potential of germplasm resources in Aroideae.


Assuntos
Araceae , Genoma de Cloroplastos , Araceae/genética , Cloroplastos/genética , Evolução Molecular , Filogenia
17.
Small ; 18(13): e2107139, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35098652

RESUMO

Potassium-ion hybrid capacitors (PIHCs) have been considered as an emerging device to render grid-scale energy storage. Nevertheless, the sluggish kinetics at the anode side and limited capacity output at the cathode side remain daunting challenges for the overall performances of PIHCs. Herein, an exquisite "homologous strategy" to devise multi-dimensional N-doped carbon nanopolyhedron@nanosheet anode and activated N-doped hierarchical carbon cathode targeting high-performance PIHCs is reported. The anode material harnessing a dual-carbon structure and the cathode candidate affording a high specific surface area (2651 m2 g-1 ) act in concert with a concentrated ether-based electrolyte, resulting in an excellent half cell performance. The related storage mechanism is systematically revealed by in situ electrokinetic characterizations. More encouragingly, the thus-derived PIHC full cell demonstrates a favorable energy output (157 Wh kg-1 ), showing distinct advantages over the state-of-the-art PIHC counterparts.

18.
Small ; 18(40): e2203583, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35996805

RESUMO

The burgeoning Li-ion battery is regarded as a powerful energy storage system by virtue of its high energy density. However, inescapable issues concerning safety and cost aspects retard its prospect in certain application scenarios. Accordingly, strenuous efforts have been devoted to the development of the emerging aqueous Zn-ion battery (AZIB) as an alternative to inflammable organic batteries. In particular, the instability from the anode side severely impedes the commercialization of AZIB. Constructing an artificial interphase layer (AIL) has been widely employed as an effective strategy to stabilize the Zn anode. This review specializes in the state-of-the-art of AIL design for Zn anode protection, encompassing the preparation methods, mechanism investigations, and device performances based on the classification of functional materials. To begin with, the origins of Zn instability are interpreted from the perspective of electrical field, mass transfer, and nucleation process, followed by a comprehensive summary with respect to functions of AIL and its designing criteria. In the end, current challenges and future outlooks based upon theoretical and experimental considerations are included.


Assuntos
Fontes de Energia Elétrica , Lítio , Eletrodos , Interfase , Água , Zinco
19.
Small ; 18(16): e2107807, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35261157

RESUMO

Vacancy engineering can modulate the electronic structure of the material and thus contribute to the formation of coordination unsaturated sites, which makes it easier to act on the substrate. Herein, Ag2 S and Ag2 S-100, which mainly have vacancy associates VAgS and VAgSAg , respectively, are prepared and characterized by positron annihilation spectroscopy. Both experimental and theoretical calculation results indicate that Ag2 S-100 exhibits excellent antibacterial activity due to its appropriate bandgap and stronger bacteria-binding ability, which endow it with a superior antibacterial activity compared to Ag2 S in the absence of light. The in vivo antibacterial experiment using a mouse wound-infection model further confirms that Ag2 S-100 has excellent antibacterial and wound-healing properties. This research provides clues for a deeper understanding of modulating electronic structures through vacancy engineering and develops a strategy for effective treatment of bacterial infections.


Assuntos
Infecções Bacterianas , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias , Eletrônica , Humanos , Cicatrização
20.
Small ; 18(15): e2107460, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35224838

RESUMO

Although graphite materials with desirable comprehensive properties dominate the anode market of commercial lithium-ion batteries (LIBs), their low capacity during fast charging precludes further commercialization. In the present work, natural graphite (G) is reported not only to suffer from low capacity during fast charging, but also from charge failure after many charging cycles. Using different characterization techniques, severe graphite exfoliation, and continuously increasing solid electrolyte interphase (SEI) are demonstrated as reasons for the failure of G samples. An ultrathin artificial SEI is proposed, addressing these problems effectively and ensuring extremely stable operation of the graphite anode, with a capacity retention of ≈97.5% after 400 cycles at 1 C. Such an artificial SEI modification strategy provides a universal approach to tailoring and designing better anode materials for next-generation LIBs with high energy densities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA