Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Cell ; 185(16): 2918-2935.e29, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35803260

RESUMO

Neoadjuvant immune checkpoint blockade has shown promising clinical activity. Here, we characterized early kinetics in tumor-infiltrating and circulating immune cells in oral cancer patients treated with neoadjuvant anti-PD-1 or anti-PD-1/CTLA-4 in a clinical trial (NCT02919683). Tumor-infiltrating CD8 T cells that clonally expanded during immunotherapy expressed elevated tissue-resident memory and cytotoxicity programs, which were already active prior to therapy, supporting the capacity for rapid response. Systematic target discovery revealed that treatment-expanded tumor T cell clones in responding patients recognized several self-antigens, including the cancer-specific antigen MAGEA1. Treatment also induced a systemic immune response characterized by expansion of activated T cells enriched for tumor-infiltrating T cell clonotypes, including both pre-existing and emergent clonotypes undetectable prior to therapy. The frequency of activated blood CD8 T cells, notably pre-treatment PD-1-positive KLRG1-negative T cells, was strongly associated with intra-tumoral pathological response. These results demonstrate how neoadjuvant checkpoint blockade induces local and systemic tumor immunity.


Assuntos
Neoplasias , Receptor de Morte Celular Programada 1 , Linfócitos T CD8-Positivos , Humanos , Imunoterapia , Linfócitos do Interstício Tumoral , Terapia Neoadjuvante , Neoplasias/terapia , Microambiente Tumoral
2.
Cell ; 182(3): 655-671.e22, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32603654

RESUMO

Checkpoint blockade with antibodies specific for the PD-1 and CTLA-4 inhibitory receptors can induce durable responses in a wide range of human cancers. However, the immunological mechanisms responsible for severe inflammatory side effects remain poorly understood. Here we report a comprehensive single-cell analysis of immune cell populations in colitis, a common and severe side effect of checkpoint blockade. We observed a striking accumulation of CD8 T cells with highly cytotoxic and proliferative states and no evidence of regulatory T cell depletion. T cell receptor (TCR) sequence analysis demonstrated that a substantial fraction of colitis-associated CD8 T cells originated from tissue-resident populations, explaining the frequently early onset of colitis symptoms following treatment initiation. Our analysis also identified cytokines, chemokines, and surface receptors that could serve as therapeutic targets for colitis and potentially other inflammatory side effects of checkpoint blockade.


Assuntos
Linfócitos T CD8-Positivos/citologia , Antígeno CTLA-4/imunologia , Colite/metabolismo , Inibidores de Checkpoint Imunológico/efeitos adversos , Imunoterapia/efeitos adversos , Células Mieloides/metabolismo , Receptores de Quimiocinas/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Antígeno CTLA-4/metabolismo , Quimiocinas/metabolismo , Colite/tratamento farmacológico , Colite/genética , Colite/imunologia , Citocinas/metabolismo , Citometria de Fluxo , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Melanoma/genética , Melanoma/imunologia , Melanoma/metabolismo , Família Multigênica , Células Mieloides/citologia , RNA-Seq , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Receptores CXCR6/genética , Receptores CXCR6/metabolismo , Receptores de Quimiocinas/genética , Análise de Célula Única , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/metabolismo
3.
Nature ; 590(7845): 344-350, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33505024

RESUMO

Identifying the relationships between chromosome structures, nuclear bodies, chromatin states and gene expression is an overarching goal of nuclear-organization studies1-4. Because individual cells appear to be highly variable at all these levels5, it is essential to map different modalities in the same cells. Here we report the imaging of 3,660 chromosomal loci in single mouse embryonic stem (ES) cells using DNA seqFISH+, along with 17 chromatin marks and subnuclear structures by sequential immunofluorescence and the expression profile of 70 RNAs. Many loci were invariably associated with immunofluorescence marks in single mouse ES cells. These loci form 'fixed points' in the nuclear organizations of single cells and often appear on the surfaces of nuclear bodies and zones defined by combinatorial chromatin marks. Furthermore, highly expressed genes appear to be pre-positioned to active nuclear zones, independent of bursting dynamics in single cells. Our analysis also uncovered several distinct mouse ES cell subpopulations with characteristic combinatorial chromatin states. Using clonal analysis, we show that the global levels of some chromatin marks, such as H3 trimethylation at lysine 27 (H3K27me3) and macroH2A1 (mH2A1), are heritable over at least 3-4 generations, whereas other marks fluctuate on a faster time scale. This seqFISH+-based spatial multimodal approach can be used to explore nuclear organization and cell states in diverse biological systems.


Assuntos
Compartimento Celular/genética , Núcleo Celular/genética , Genômica/métodos , Células-Tronco Embrionárias Murinas/citologia , Análise de Célula Única/métodos , Transcriptoma/genética , Animais , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Cromossomos de Mamíferos/genética , Células Clonais/citologia , Imunofluorescência , Marcadores Genéticos , Histonas/metabolismo , Lisina/metabolismo , Masculino , Camundongos , Fatores de Tempo
4.
Nature ; 586(7827): E7, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32934359

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Nature ; 577(7791): E6, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31896818

RESUMO

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Nature ; 572(7770): 528-532, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31391582

RESUMO

During post-implantation development of the mouse embryo, descendants of the inner cell mass in the early epiblast transit from the naive to primed pluripotent state1. Concurrently, germ layers are formed and cell lineages are specified, leading to the establishment of the blueprint for embryogenesis. Fate-mapping and lineage-analysis studies have revealed that cells in different regions of the germ layers acquire location-specific cell fates during gastrulation2-5. The regionalization of cell fates preceding the formation of the basic body plan-the mechanisms of which are instrumental for understanding embryonic programming and stem-cell-based translational study-is conserved in vertebrate embryos6-8. However, a genome-wide molecular annotation of lineage segregation and tissue architecture of the post-implantation embryo has yet to be undertaken. Here we report a spatially resolved transcriptome of cell populations at defined positions in the germ layers during development from pre- to late-gastrulation stages. This spatiotemporal transcriptome provides high-resolution digitized in situ gene-expression profiles, reveals the molecular genealogy of tissue lineages and defines the continuum of pluripotency states in time and space. The transcriptome further identifies the networks of molecular determinants that drive lineage specification and tissue patterning, supports a role of Hippo-Yap signalling in germ-layer development and reveals the contribution of visceral endoderm to the endoderm in the early mouse embryo.


Assuntos
Linhagem da Célula , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/citologia , Camadas Germinativas/embriologia , Camadas Germinativas/metabolismo , Via de Sinalização Hippo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/metabolismo , Regulon/genética , Transdução de Sinais , Transcriptoma/genética , Proteínas de Sinalização YAP
7.
Nucleic Acids Res ; 51(2): 501-516, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35929025

RESUMO

Individual cells are basic units of life. Despite extensive efforts to characterize the cellular heterogeneity of different organisms, cross-species comparisons of landscape dynamics have not been achieved. Here, we applied single-cell RNA sequencing (scRNA-seq) to map organism-level cell landscapes at multiple life stages for mice, zebrafish and Drosophila. By integrating the comprehensive dataset of > 2.6 million single cells, we constructed a cross-species cell landscape and identified signatures and common pathways that changed throughout the life span. We identified structural inflammation and mitochondrial dysfunction as the most common hallmarks of organism aging, and found that pharmacological activation of mitochondrial metabolism alleviated aging phenotypes in mice. The cross-species cell landscape with other published datasets were stored in an integrated online portal-Cell Landscape. Our work provides a valuable resource for studying lineage development, maturation and aging.


How many cell types are there in nature? How do they change during the life cycle? These are two fundamental questions that researchers have been trying to understand in the area of biology. In this study, single-cell mRNA sequencing data were used to profile over 2.6 million individual cells from mice, zebrafish and Drosophila at different life stages, 1.3 million of which were newly collected. The comprehensive datasets allow investigators to construct a cross-species cell landscape that helps to reveal the conservation and diversity of cell taxonomies at genetic and regulatory levels. The resources in this study are assembled into a publicly available website at http://bis.zju.edu.cn/cellatlas/.


Assuntos
Análise de Célula Única , Animais , Camundongos , Análise de Sequência de RNA , Peixe-Zebra/crescimento & desenvolvimento , Drosophila/crescimento & desenvolvimento
8.
Nucleic Acids Res ; 48(4): 1828-1842, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31853542

RESUMO

The developmental potential of cells, termed pluripotency, is highly dynamic and progresses through a continuum of naive, formative and primed states. Pluripotency progression of mouse embryonic stem cells (ESCs) from naive to formative and primed state is governed by transcription factors (TFs) and their target genes. Genomic techniques have uncovered a multitude of TF binding sites in ESCs, yet a major challenge lies in identifying target genes from functional binding sites and reconstructing dynamic transcriptional networks underlying pluripotency progression. Here, we integrated time-resolved 'trans-omic' datasets together with TF binding profiles and chromatin conformation data to identify target genes of a panel of TFs. Our analyses revealed that naive TF target genes are more likely to be TFs themselves than those of formative TFs, suggesting denser hierarchies among naive TFs. We also discovered that formative TF target genes are marked by permissive epigenomic signatures in the naive state, indicating that they are poised for expression prior to the initiation of pluripotency transition to the formative state. Finally, our reconstructed transcriptional networks pinpointed the precise timing from naive to formative pluripotency progression and enabled the spatiotemporal mapping of differentiating ESCs to their in vivo counterparts in developing embryos.


Assuntos
Desenvolvimento Embrionário/genética , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição/genética , Animais , Sítios de Ligação/genética , Diferenciação Celular/genética , Cromatina/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Genoma/genética , Camundongos
9.
Genome Res ; 27(4): 567-579, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28223401

RESUMO

Preimplantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA), and cell-fate commitment. The molecular basis of these processes remains obscure in primates in which there is a high rate of embryo wastage. Thus, understanding the factors involved in genome reprogramming and ZGA might help reproductive success during this susceptible period of early development and generate induced pluripotent stem cells with greater efficiency. Moreover, explaining the molecular basis responsible for embryo wastage in primates will greatly expand our knowledge of species evolution. By using RNA-seq in single and pooled oocytes and embryos, we defined the transcriptome throughout preimplantation development in rhesus monkey. In comparison to archival human and mouse data, we found that the transcriptome dynamics of monkey oocytes and embryos were very similar to those of human but very different from those of mouse. We identified several classes of maternal and zygotic genes, whose expression peaks were highly correlated with the time frames of genome reprogramming, ZGA, and cell-fate commitment, respectively. Importantly, comparison of the ZGA-related network modules among the three species revealed less robust surveillance of genomic instability in primate oocytes and embryos than in rodents, particularly in the pathways of DNA damage signaling and homology-directed DNA double-strand break repair. This study highlights the utility of monkey models to better understand the molecular basis for genome reprogramming, ZGA, and genomic stability surveillance in human early embryogenesis and may provide insights for improved homologous recombination-mediated gene editing in monkey.


Assuntos
Blastocisto/metabolismo , Reparo do DNA por Junção de Extremidades , Oócitos/metabolismo , Transcriptoma , Animais , Quebras de DNA de Cadeia Dupla , Feminino , Macaca mulatta , Especificidade da Espécie
10.
Dev Growth Differ ; 60(8): 463-472, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30368783

RESUMO

Gastrulation is a key milestone in early mouse development when multipotent epiblast cells are allocated to progenitors of diverse tissue lineages that constitute the ensemble of building blocks of the body plan. The analysis of gene function revealed that the activity of transcription factors is likely to be the fundamental driving force underpinning the lineage specification and tissue patterning in the primary germ layers. The developmental-spatial transcriptome of the gastrulating embryo revealed the concerted and interactive activity of the gene regulatory network anchored by development-related transcription factors. The findings of the network structure offer novel insights into the regionalization of tissue fates and enable tracking of the progression of epiblast patterning, leading to the construction of molecularly annotated fate maps of epiblast during gastrulation.


Assuntos
Gastrulação/genética , Redes Reguladoras de Genes/genética , Camadas Germinativas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Camadas Germinativas/citologia , Camadas Germinativas/crescimento & desenvolvimento , Camundongos
11.
Bioinformatics ; 31(2): 194-200, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25236462

RESUMO

MOTIVATION: Protein phosphorylation is the most common post-translational modification (PTM) regulating major cellular processes through highly dynamic and complex signaling pathways. Large-scale comparative phosphoproteomic studies have frequently been done on whole cells or organs by conventional bottom-up mass spectrometry approaches, i.e at the phosphopeptide level. Using this approach, there is no way to know from where the phosphopeptide signal originated. Also, as a consequence of the scale of these studies, important information on the localization of phosphorylation sites in subcellular compartments (SCs) is not surveyed. RESULTS: Here, we present a first account of the emerging field of subcellular phosphoproteomics where a support vector machine (SVM) approach was combined with a novel algorithm of discrete wavelet transform (DWT) to facilitate the identification of compartment-specific phosphorylation sites and to unravel the intricate regulation of protein phosphorylation. Our data reveal that the subcellular phosphorylation distribution is compartment type dependent and that the phosphorylation displays site-specific sequence motifs that diverge between SCs. AVAILABILITY AND IMPLEMENTATION: The method and database both are available as a web server at: http://bioinfo.ncu.edu.cn/SubPhos.aspx. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Fosfopeptídeos/análise , Proteoma/análise , Proteômica/métodos , Software , Humanos , Espectrometria de Massas , Fosforilação , Processamento de Proteína Pós-Traducional , Frações Subcelulares , Máquina de Vetores de Suporte
13.
Bioinformatics ; 29(13): 1614-22, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23626001

RESUMO

MOTIVATION: Systematic dissection of the ubiquitylation proteome is emerging as an appealing but challenging research topic because of the significant roles ubiquitylation play not only in protein degradation but also in many other cellular functions. High-throughput experimental studies using mass spectrometry have identified many ubiquitylation sites, primarily from eukaryotes. However, the vast majority of ubiquitylation sites remain undiscovered, even in well-studied systems. Because mass spectrometry-based experimental approaches for identifying ubiquitylation events are costly, time-consuming and biased toward abundant proteins and proteotypic peptides, in silico prediction of ubiquitylation sites is a potentially useful alternative strategy for whole proteome annotation. Because of various limitations, current ubiquitylation site prediction tools were not well designed to comprehensively assess proteomes. RESULTS: We present a novel tool known as UbiProber, specifically designed for large-scale predictions of both general and species-specific ubiquitylation sites. We collected proteomics data for ubiquitylation from multiple species from several reliable sources and used them to train prediction models by a comprehensive machine-learning approach that integrates the information from key positions and key amino acid residues. Cross-validation tests reveal that UbiProber achieves some improvement over existing tools in predicting species-specific ubiquitylation sites. Moreover, independent tests show that UbiProber improves the areas under receiver operating characteristic curves by ~15% by using the Combined model. AVAILABILITY: The UbiProber server is freely available on the web at http://bioinfo.ncu.edu.cn/UbiProber.aspx. The software system of UbiProber can be downloaded at the same site. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Aminoácidos/química , Análise de Sequência de Proteína/métodos , Software , Proteínas Ubiquitinadas/química , Ubiquitinação , Animais , Inteligência Artificial , Humanos , Camundongos , Proteoma/metabolismo , Proteômica/métodos , Especificidade da Espécie , Ubiquitina/metabolismo
14.
J Proteome Res ; 12(2): 949-58, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23298314

RESUMO

Next-generation sequencing (NGS) technologies are yielding ever higher volumes of genetic variation data. Given this large amount of data, it has become both a possibility and a priority to determine what the functional implication of genetic variations is. Considering the essential roles of acetylation in protein functions, it is highly likely that acetylation related genetic variations change protein functions. In this work, we performed a proteome-wide analysis of amino acid variations that could potentially influence protein lysine acetylation characteristics in human variant proteins. Here, we defined the AcetylAAVs as acetylation related amino acid variations that affect acetylation sites or their interacting acetyltransferases, and categorized three types of AcetylAAVs. Using the developed prediction system, named KAcePred, we detected that 50.87% of amino acid variations are potential AcetylAAVs and 12.32% of disease mutations could result in AcetylAAVs. More interestingly, from the statistical analysis, we found that the amino acid variations that directly create new potential lysine acetylation sites have more chance to cause diseases. It can be anticipated that the analysis of AcetylAAVs might be useful to screen important polymorphisms and help to identify the mechanism of genetic diseases. A user-friendly web interface for analysis of AcetylAAVs is now freely available at http://bioinfo.ncu.edu.cn/AcetylAAVs_Home.aspx .


Assuntos
Acetiltransferases/metabolismo , Variação Genética , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/análise , Proteoma/metabolismo , Acetilação , Acetiltransferases/classificação , Motivos de Aminoácidos , Biologia Computacional , Bases de Dados de Proteínas , Humanos , Internet , Lisina/química , Dados de Sequência Molecular , Proteoma/genética , Máquina de Vetores de Suporte , Interface Usuário-Computador
15.
Nat Commun ; 14(1): 6993, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914731

RESUMO

Adult skeletal muscle regeneration is mainly driven by muscle stem cells (MuSCs), which are highly heterogeneous. Although recent studies have started to characterize the heterogeneity of MuSCs, whether a subset of cells with distinct exists within MuSCs remains unanswered. Here, we find that a population of MuSCs, marked by Gli1 expression, is required for muscle regeneration. The Gli1+ MuSC population displays advantages in proliferation and differentiation both in vitro and in vivo. Depletion of this population leads to delayed muscle regeneration, while transplanted Gli1+ MuSCs support muscle regeneration more effectively than Gli1- MuSCs. Further analysis reveals that even in the uninjured muscle, Gli1+ MuSCs have elevated mTOR signaling activity, increased cell size and mitochondrial numbers compared to Gli1- MuSCs, indicating Gli1+ MuSCs are displaying the features of primed MuSCs. Moreover, Gli1+ MuSCs greatly contribute to the formation of GAlert cells after muscle injury. Collectively, our findings demonstrate that Gli1+ MuSCs represents a distinct MuSC population which is more active in the homeostatic muscle and enters the cell cycle shortly after injury. This population functions as the tissue-resident sentinel that rapidly responds to injury and initiates muscle regeneration.


Assuntos
Doenças Musculares , Células Satélites de Músculo Esquelético , Humanos , Músculo Esquelético/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Diferenciação Celular
16.
Nat Commun ; 14(1): 4599, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524711

RESUMO

Mammalian embryos exhibit sophisticated cellular patterning that is intricately orchestrated at both molecular and cellular level. It has recently become apparent that cells within the animal body display significant heterogeneity, both in terms of their cellular properties and spatial distributions. However, current spatial transcriptomic profiling either lacks three-dimensional representation or is limited in its ability to capture the complexity of embryonic tissues and organs. Here, we present a spatial transcriptomic atlas of all major organs at embryonic day 13.5 in the mouse embryo, and provide a three-dimensional rendering of molecular regulation for embryonic patterning with stacked sections. By integrating the spatial atlas with corresponding single-cell transcriptomic data, we offer a detailed molecular annotation of the dynamic nature of organ development, spatial cellular interactions, embryonic axes, and divergence of cell fates that underlie mammalian development, which would pave the way for precise organ engineering and stem cell-based regenerative medicine.


Assuntos
Organogênese , Transcriptoma , Animais , Camundongos , Organogênese/genética , Perfilação da Expressão Gênica , Embrião de Mamíferos , Células-Tronco , Mamíferos
17.
Biochim Biophys Acta ; 1813(3): 424-30, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21255619

RESUMO

It is very challenging and complicated to predict protein locations at the sub-subcellular level. The key to enhancing the prediction quality for protein sub-subcellular locations is to grasp the core features of a protein that can discriminate among proteins with different subcompartment locations. In this study, a different formulation of pseudoamino acid composition by the approach of discrete wavelet transform feature extraction was developed to predict submitochondria and subchloroplast locations. As a result of jackknife cross-validation, with our method, it can efficiently distinguish mitochondrial proteins from chloroplast proteins with total accuracy of 98.8% and obtained a promising total accuracy of 93.38% for predicting submitochondria locations. Especially the predictive accuracy for mitochondrial outer membrane and chloroplast thylakoid lumen were 82.93% and 82.22%, respectively, showing an improvement of 4.88% and 27.22% when other existing methods were compared. The results indicated that the proposed method might be employed as a useful assistant technique for identifying sub-subcellular locations. We have implemented our algorithm as an online service called SubIdent (http://bioinfo.ncu.edu.cn/services.aspx).


Assuntos
Aminoácidos/química , Cloroplastos/química , Biologia Computacional/métodos , Mitocôndrias/química , Proteínas Mitocondriais/análise , Proteínas de Plantas/análise , Análise de Ondaletas , Algoritmos , Animais , Inteligência Artificial , Bases de Dados de Proteínas , Humanos , Modelos Biológicos , Plantas/química
18.
Anal Biochem ; 428(1): 16-23, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22691961

RESUMO

Tyrosine sulfation is a ubiquitous posttranslational modification that regulates extracellular protein-protein interactions, intracellular protein transportation modulation, and protein proteolytic process. However, identifying tyrosine sulfation sites remains a challenge due to the lability of sulfation sequences. In this study, we developed a method called PredSulSite that incorporates protein secondary structure, physicochemical properties of amino acids, and residue sequence order information based on support vector machine to predict sulfotyrosine sites. Three types of encoding algorithms-secondary structure, grouped weight, and autocorrelation function-were applied to mine features from tyrosine sulfation proteins. The prediction model with multiple features achieved an accuracy of 92.89% in 10-fold cross-validation. Feature analysis showed that the coil structure, acidic amino acids, and residue interactions around the tyrosine sulfation sites all contributed to the sulfation site determination. The detailed feature analysis in this work can help us to understand the sulfation mechanism and provide guidance for the related experimental validation. PredSulSite is available as a community resource at http://www.bioinfo.ncu.edu.cn/inquiries_PredSulSite.aspx.


Assuntos
Algoritmos , Biologia Computacional/métodos , Proteínas/metabolismo , Tirosina/análogos & derivados , Sequência de Aminoácidos , Bases de Dados de Proteínas , Internet , Modelos Moleculares , Dados de Sequência Molecular , Fosfotirosina/metabolismo , Estrutura Secundária de Proteína , Proteínas/química , Curva ROC , Tirosina/metabolismo
19.
J Theor Biol ; 310: 223-30, 2012 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-22796329

RESUMO

Lysine acetylation and methylation are two major post-translational modifications of lysine residues. They play vital roles in both biological and pathological processes. Specific lysine residues in H3 histone protein tails appear to be targeted for either acetylation or methylation. Hence it is very challenging to distinguish between acetylated and methylated lysine residues using computational methods. This work presents a method that incorporates protein sequence information, secondary structure and amino acid properties to differentiate acetyl-lysine from methyl-lysine. We apply an encoding scheme based on grouped weight and position weight amino acid composition to extract sequence information and physicochemical properties around lysine sites. The proposed method achieves an accuracy of 93.3% using a jackknife test. Feature analysis demonstrates that the prediction model with multiple features can take full advantage of the supplementary information from different features to improve classification performance and prediction robustness. Analysis of the characteristics of lysine residues which can be either methylated or acetylated shows that they are more similar to methyl-lysine than to acetyl-lysine.


Assuntos
Lisina/metabolismo , Proteínas/química , Análise de Sequência de Proteína/métodos , Acetilação , Sequência de Aminoácidos , Aminoácidos/metabolismo , Bases de Dados de Proteínas , Metilação , Dados de Sequência Molecular , Matrizes de Pontuação de Posição Específica , Estrutura Secundária de Proteína , Máquina de Vetores de Suporte
20.
Genetics ; 217(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33681970

RESUMO

In the last larval instar, uncommitted progenitor cells in the Drosophila eye primordium start to adopt individual retinal cell fates, arrest their growth and proliferation, and initiate terminal differentiation into photoreceptor neurons and other retinal cell types. To explore the regulation of these processes, we have performed mRNA-Seq studies of the larval eye and antennal primordial at multiple developmental stages. A total of 10,893 fly genes were expressed during these stages and could be adaptively clustered into gene groups, some of whose expression increases or decreases in parallel with the cessation of proliferation and onset of differentiation. Using in situ hybridization of a sample of 98 genes to verify spatial and temporal expression patterns, we estimate that 534 genes or more are transcriptionally upregulated during retinal differentiation, and 1367 or more downregulated as progenitor cells differentiate. Each group of co-expressed genes is enriched for regulatory motifs recognized by co-expressed transcription factors, suggesting that they represent coherent transcriptional regulatory programs. Using available mutant strains, we describe novel roles for the transcription factors SoxNeuro (SoxN), H6-like homeobox (Hmx), CG10253, without children (woc), Structure specific recognition protein (Ssrp), and multisex combs (mxc).


Assuntos
Olho Composto de Artrópodes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Transcriptoma , Animais , Diferenciação Celular , Olho Composto de Artrópodes/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA