Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(37): 48782-48791, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-38165729

RESUMO

Aqueous batteries are considered as promising alternative power sources due to their eco-friendly, cost-effective, and nonflammable attributes. Employing organic-based electrode materials offers further advantages toward building greener and sustainable systems, owing to their tunability and environmental friendliness. In order to enhance the energy and power densities, superconcentrated aqueous electrolytes, such as water-in-salt electrolytes (WiSE), have renewed the interest in aqueous batteries due to their enhanced stability and much wider electrochemical stability window (>1.23 V) compared with the traditional aqueous electrolytes. Here, we present a perylene diimide-based electrode material (PDI-Urea) as an appealing anode for aqueous potassium energy storage systems and investigate their electrochemical performance in three WiSE electrolytes, namely, 30 M potassium acetate, 40 M potassium formate and 30 M potassium bis(fluorosulfonyl)imide (KFSI). To explore the potential of PDI-Urea for potassium-based electrochemical energy systems, we fabricated full cell devices such as aqueous potassium dual-ion battery (APDIB) and aqueous K-ion battery (AKIB) and studied their electrochemical properties with 30 M KFSI electrolyte. The full cell K-ion battery, using a PBA cathode, exhibited excellent electrochemical performance with good rate capability and impressive capacity retention of 91% upon 1000 cycles. Further, the reaction mechanism of the electrodes is systematically analyzed using ex-situ studies.

2.
ACS Omega ; 5(14): 7885-7894, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32309697

RESUMO

Poly(ethylene oxide) (PEO)-based composite polymer electrolytes (CPEs) containing the amine-functionalized, zirconium-based metal-organic framework @silica (UiO-66-NH2@SiO2) and lithium, LiN(CF3SO2)2 salt (LiTFSI) are prepared using a simple hot press method. The electrochemical properties such as compatibility of the electrolyte with the Li metal anode, Li transference number, and ionic conductivity are investigated for the different systems containing different relative concentrations of the additives. The incorporation of UiO-66-NH2@SiO2 in the PEO-LiTFSI matrix not only enhanced ionic conductivity by one order of magnitude but also offered better compatibility and suppressed the formation of lithium dendrites appreciably. X-ray photoelectron spectroscopy studies on post-cycled materials revealed the formation of lithium alkoxide (RO-Li) on the cathode and Li2O on the anode. The coin cell (2032-type) consisting of LiFePO4/CPE/Li with UiO-66-NH2@SiO2 as filler provided a discharge capacity of 151 mA h g-1 at 0.1 C-rate at 60 °C, measurably higher than control experiments utilizing SiO2 and UiO-66-NH2. The notable enhancement of electrochemical properties when incorporating the UiO-66-NH2@SiO2 at the CPE was attributed to formation of more uniform ion conduction pockets and channels within the PEO matrix, facilitated by the presence of the microporous UiO-66-NH2@SiO2. The enhanced distribution of microporous channels, where Li ions are assumed to percolate through within the matrix, is assumed to desirably reduce formation of Li dendrites by increasing diffusion channels and therefore reducing crystallization and growth of dendrites at the electrode surface.

3.
ACS Omega ; 4(2): 3894-3903, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31459600

RESUMO

Even though lithium-sulfur batteries possess higher theoretical capacity and energy density than conventional lithium-ion batteries, the challenging issues such as poor electronic conductivity of sulfur, dendrite formation and subsequent polysulfide shuttling, and the undesirable interfacial properties of the lithium metal anode with an electrolyte impede this system from commercialization. To circumvent the dissolution of lithium polysulfides and to improve the interfacial properties of the electrolyte with the lithium metal anode, numerous tactics have been employed. Therefore, in this work, hybrid electrolytes composed of room-temperature ionic liquids of different cations with the bis(trifluoromethanesulfonyl)imide (TFSI) anion and a nonaqueous liquid electrolyte [1 M LiTFSI in tetraethylene glycol dimethyl ether/1,3-dioxolane 1:1 (v/v)] have been prepared, and their physicoelectrochemical properties were thoroughly investigated. The lithium surface upon cycling was characterized by Raman, Fourier transform infrared, and X-ray photoelectron spectroscopy analyses. The dendrite and shuttle current measurements also indicated the formation of a stable solid electrolyte interphase and lower polysulfide shuttling between the electrodes. Among the systems examined, the hybrid electrolyte composed of 1-methyl-1-propylpyrrolidinium TFSI exhibited appreciable charge-discharge characteristics, better interfacial properties with the lithium metal anode, and increased ionic conductivity which were attributed to the enhanced ion-pair interaction that is present between the 1-methyl-1-propylpyrrolidinium cation and the TFSI anion in the electrolyte which was substantiated by Raman analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA