Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Revista
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2403552, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963327

RESUMO

In this study, the synthesis of a MXene (Ti3C2Tx)-derived TiO2/starbon (M-TiO2/Starbon-800 °C) nanocomposite using a facile calcination method is explored. High-temperature exposure transforms layered Ti3C2Tx into rod-like TiO2 and starbon into amorphous carbon. The resulting M-TiO2/Starbon-800 °C nanocomposite exhibits a significantly larger surface area and pore volume compared to its individual components, leading to superior electrochemical performance. In a three-electrode configuration, the nanocomposite achieved a specific capacitance (Csp) of 1352 Fg⁻¹ at 1 Ag⁻¹, while retaining more than 99% of its Csp after 50 000 charge/discharge cycles. Furthermore, when incorporated into a two-electrode symmetric coin cell, it demonstrates a Csp of 115 Fg⁻¹ along with exceptional long cycle life. Moreover, the device shows an energy density (ED) of 51 Whkg-1 and a power density (PD) of 7912 Wkg-1 at 5 Ag-1. The enhanced charge storage is attributed to the formation of a porous structure with a high specific surface area resulting from the interaction between M-TiO2 nanorods and starbon, which facilitates efficient ion penetration.

2.
Small ; 20(5): e2305126, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37735144

RESUMO

It is always challenging to integrate multiple functions into one material system. However, those materials/devices will address society's critical global challenges and technological demands if achieved with innovative design strategies and engineering. Here, one such material with a broader spectrum of desired properties appropriate for seven applications is identified and explored, and a glucose-sensing-triggered energy-storage mechanism is demonstrated. To date, the Titanium (Ti)-Zinc (Zn) binary alloys are investigated only as mixed phases and for a maximum of three applications. In contrast, the novel single phase of structurally stable 50 Ti-50 Zn (Ti0.5 Zn0.5 ) is synthesized and proven suitable for seven emerging applications. Interestingly, it is thermally stable up to 750 °C and possesses excellent mechanical, tribological properties and corrosion resistance. While exceptional biocompatibility is evident even up to a concentration of 500 µg mL-1 , the antibacterial activity against E. coli is also seen. Further, rapid detection and superior selectivity for glucose, along with supercabattery behavior, unambiguously demonstrate that this novel monophase is a remarkable multifunctional material than the existing mixed-phase Ti-Zn compounds. The coin-cell supercapacitor shows outstanding stability up to 30 000 cycles with >100% retention capacity. This allows us to prototype a glucose-sensing-triggered energy-storage-device system for wearable point-of-care diagnostic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA