Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 467
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(25): 5517-5535.e24, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-37992713

RESUMO

Transfer RNA (tRNA) modifications are critical for protein synthesis. Queuosine (Q), a 7-deaza-guanosine derivative, is present in tRNA anticodons. In vertebrate tRNAs for Tyr and Asp, Q is further glycosylated with galactose and mannose to generate galQ and manQ, respectively. However, biogenesis and physiological relevance of Q-glycosylation remain poorly understood. Here, we biochemically identified two RNA glycosylases, QTGAL and QTMAN, and successfully reconstituted Q-glycosylation of tRNAs using nucleotide diphosphate sugars. Ribosome profiling of knockout cells revealed that Q-glycosylation slowed down elongation at cognate codons, UAC and GAC (GAU), respectively. We also found that galactosylation of Q suppresses stop codon readthrough. Moreover, protein aggregates increased in cells lacking Q-glycosylation, indicating that Q-glycosylation contributes to proteostasis. Cryo-EM of human ribosome-tRNA complex revealed the molecular basis of codon recognition regulated by Q-glycosylations. Furthermore, zebrafish qtgal and qtman knockout lines displayed shortened body length, implying that Q-glycosylation is required for post-embryonic growth in vertebrates.


Assuntos
RNA de Transferência , Animais , Humanos , Ratos , Anticódon , Linhagem Celular , Códon , Glicosilação , Nucleosídeo Q/química , Nucleosídeo Q/genética , Nucleosídeo Q/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Suínos , Peixe-Zebra/metabolismo , Conformação de Ácido Nucleico
2.
Nat Rev Mol Cell Biol ; 22(6): 375-392, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33658722

RESUMO

Transfer RNA (tRNA) is an adapter molecule that links a specific codon in mRNA with its corresponding amino acid during protein synthesis. tRNAs are enzymatically modified post-transcriptionally. A wide variety of tRNA modifications are found in the tRNA anticodon, which are crucial for precise codon recognition and reading frame maintenance, thereby ensuring accurate and efficient protein synthesis. In addition, tRNA-body regions are also frequently modified and thus stabilized in the cell. Over the past two decades, 16 novel tRNA modifications were discovered in various organisms, and the chemical space of tRNA modification continues to expand. Recent studies have revealed that tRNA modifications can be dynamically altered in response to levels of cellular metabolites and environmental stresses. Importantly, we now understand that deficiencies in tRNA modification can have pathological consequences, which are termed 'RNA modopathies'. Dysregulation of tRNA modification is involved in mitochondrial diseases, neurological disorders and cancer.


Assuntos
Processamento Pós-Transcricional do RNA/genética , RNA de Transferência/genética , Animais , Códon/genética , Humanos , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Mol Cell ; 84(1): 94-106, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181765

RESUMO

RNA molecules are modified post-transcriptionally to acquire their diverse functions. Transfer RNA (tRNA) has the widest variety and largest numbers of RNA modifications. tRNA modifications are pivotal for decoding the genetic code and stabilizing the tertiary structure of tRNA molecules. Alternation of tRNA modifications directly modulates the structure and function of tRNAs and regulates gene expression. Notably, thermophilic organisms exhibit characteristic tRNA modifications that are dynamically regulated in response to varying growth temperatures, thereby bolstering fitness in extreme environments. Here, we review the history and latest findings regarding the functions and biogenesis of several tRNA modifications that contribute to the cellular thermotolerance of thermophiles.


Assuntos
Termotolerância , Termotolerância/genética , Processamento Pós-Transcricional do RNA , Código Genético , RNA de Transferência/genética , RNA/genética
4.
Cell ; 164(5): 962-73, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26919431

RESUMO

PIWI-interacting RNAs (piRNAs) play a crucial role in transposon silencing in animal germ cells. In piRNA biogenesis, single-stranded piRNA intermediates are loaded into PIWI-clade proteins and cleaved by Zucchini/MitoPLD, yielding precursor piRNAs (pre-piRNAs). Pre-piRNAs that are longer than the mature piRNA length are then trimmed at their 3' ends. Although recent studies implicated the Tudor domain protein Papi/Tdrkh in pre-piRNA trimming, the identity of Trimmer and its relationship with Papi/Tdrkh remain unknown. Here, we identified PNLDC1, an uncharacterized 3'-5' exonuclease, as Trimmer in silkworms. Trimmer is enriched in the mitochondrial fraction and binds to Papi/Tdrkh. Depletion of Trimmer and Papi/Tdrkh additively inhibits trimming, causing accumulation of ∼35-40-nt pre-piRNAs that are impaired for target cleavage and prone to degradation. Our results highlight the cooperative action of Trimmer and Papi/Tdrkh in piRNA maturation.


Assuntos
Bombyx/enzimologia , Bombyx/genética , Proteínas de Insetos/metabolismo , Processamento Pós-Transcricional do RNA , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Bombyx/metabolismo , Mitocôndrias/metabolismo
5.
Nature ; 616(7956): 390-397, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37020030

RESUMO

The class 2 type V CRISPR effector Cas12 is thought to have evolved from the IS200/IS605 superfamily of transposon-associated TnpB proteins1. Recent studies have identified TnpB proteins as miniature RNA-guided DNA endonucleases2,3. TnpB associates with a single, long RNA (ωRNA) and cleaves double-stranded DNA targets complementary to the ωRNA guide. However, the RNA-guided DNA cleavage mechanism of TnpB and its evolutionary relationship with Cas12 enzymes remain unknown. Here we report the cryo-electron microscopy (cryo-EM) structure of Deinococcus radiodurans ISDra2 TnpB in complex with its cognate ωRNA and target DNA. In the structure, the ωRNA adopts an unexpected architecture and forms a pseudoknot, which is conserved among all guide RNAs of Cas12 enzymes. Furthermore, the structure, along with our functional analysis, reveals how the compact TnpB recognizes the ωRNA and cleaves target DNA complementary to the guide. A structural comparison of TnpB with Cas12 enzymes suggests that CRISPR-Cas12 effectors acquired an ability to recognize the protospacer-adjacent motif-distal end of the guide RNA-target DNA heteroduplex, by either asymmetric dimer formation or diverse REC2 insertions, enabling engagement in CRISPR-Cas adaptive immunity. Collectively, our findings provide mechanistic insights into TnpB function and advance our understanding of the evolution from transposon-encoded TnpB proteins to CRISPR-Cas12 effectors.


Assuntos
Proteínas de Bactérias , Microscopia Crioeletrônica , Elementos de DNA Transponíveis , Deinococcus , Endodesoxirribonucleases , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , DNA/química , DNA/genética , DNA/metabolismo , DNA/ultraestrutura , Elementos de DNA Transponíveis/genética , RNA Guia de Sistemas CRISPR-Cas/química , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo , RNA Guia de Sistemas CRISPR-Cas/ultraestrutura , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/ultraestrutura , Deinococcus/enzimologia , Deinococcus/genética , Especificidade por Substrato
6.
Mol Cell ; 81(4): 659-674.e7, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33472058

RESUMO

About 150 post-transcriptional RNA modifications have been identified in all kingdoms of life. During RNA catabolism, most modified nucleosides are resistant to degradation and are released into the extracellular space. In this study, we explored the physiological role of these extracellular modified nucleosides and found that N6-methyladenosine (m6A), widely recognized as an epigenetic mark in RNA, acts as a ligand for the human adenosine A3 receptor, for which it has greater affinity than unmodified adenosine. We used structural modeling to define the amino acids required for specific binding of m6A to the human A3 receptor. We also demonstrated that m6A was dynamically released in response to cytotoxic stimuli and facilitated type I allergy in vivo. Our findings implicate m6A as a signaling molecule capable of activating G protein-coupled receptors (GPCRs) and triggering pathophysiological responses, a previously unreported property of RNA modifications.


Assuntos
Adenosina/análogos & derivados , Epigênese Genética , Processamento Pós-Transcricional do RNA , Receptor A3 de Adenosina/metabolismo , Transdução de Sinais , Adenosina/genética , Adenosina/metabolismo , Animais , Feminino , Células HEK293 , Humanos , Masculino , Coelhos , Receptor A3 de Adenosina/genética
7.
Mol Cell ; 81(15): 3160-3170.e9, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34174184

RESUMO

RelA-SpoT Homolog (RSH) enzymes control bacterial physiology through synthesis and degradation of the nucleotide alarmone (p)ppGpp. We recently discovered multiple families of small alarmone synthetase (SAS) RSH acting as toxins of toxin-antitoxin (TA) modules, with the FaRel subfamily of toxSAS abrogating bacterial growth by producing an analog of (p)ppGpp, (pp)pApp. Here we probe the mechanism of growth arrest used by four experimentally unexplored subfamilies of toxSAS: FaRel2, PhRel, PhRel2, and CapRel. Surprisingly, all these toxins specifically inhibit protein synthesis. To do so, they transfer a pyrophosphate moiety from ATP to the tRNA 3' CCA. The modification inhibits both tRNA aminoacylation and the sensing of cellular amino acid starvation by the ribosome-associated RSH RelA. Conversely, we show that some small alarmone hydrolase (SAH) RSH enzymes can reverse the pyrophosphorylation of tRNA to counter the growth inhibition by toxSAS. Collectively, we establish RSHs as RNA-modifying enzymes.


Assuntos
Toxinas Bacterianas/metabolismo , Guanosina Pentafosfato/metabolismo , Ligases/metabolismo , RNA de Transferência/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/farmacologia , Bacilos Gram-Positivos Asporogênicos/química , Bacilos Gram-Positivos Asporogênicos/metabolismo , Guanosina Pentafosfato/química , Ligases/química , Ligases/genética , Fosforilação/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/fisiologia , Inibidores da Síntese de Proteínas/farmacologia , Pirofosfatases , Ribossomos/metabolismo
8.
Nature ; 605(7909): 372-379, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35477761

RESUMO

Post-transcriptional modifications have critical roles in tRNA stability and function1-4. In thermophiles, tRNAs are heavily modified to maintain their thermal stability under extreme growth temperatures5,6. Here we identified 2'-phosphouridine (Up) at position 47 of tRNAs from thermophilic archaea. Up47 confers thermal stability and nuclease resistance to tRNAs. Atomic structures of native archaeal tRNA showed a unique metastable core structure stabilized by Up47. The 2'-phosphate of Up47 protrudes from the tRNA core and prevents backbone rotation during thermal denaturation. In addition, we identified the arkI gene, which encodes an archaeal RNA kinase responsible for Up47 formation. Structural studies showed that ArkI has a non-canonical kinase motif surrounded by a positively charged patch for tRNA binding. A knockout strain of arkI grew slowly at high temperatures and exhibited a synthetic growth defect when a second tRNA-modifying enzyme was depleted. We also identified an archaeal homologue of KptA as an eraser that efficiently dephosphorylates Up47 in vitro and in vivo. Taken together, our findings show that Up47 is a reversible RNA modification mediated by ArkI and KptA that fine-tunes the structural rigidity of tRNAs under extreme environmental conditions.


Assuntos
Archaea , RNA de Transferência , Termotolerância , Archaea/genética , Ambientes Extremos , Fosforilação , Processamento Pós-Transcricional do RNA , RNA Arqueal/química , RNA Arqueal/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Uridina
9.
Nucleic Acids Res ; 52(10): 5987-6001, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38485701

RESUMO

Mycobacterium tuberculosis transfer RNA (tRNA) terminal nucleotidyltransferase toxin, MenT3, incorporates nucleotides at the 3'-CCA end of tRNAs, blocking their aminoacylation and inhibiting protein synthesis. Here, we show that MenT3 most effectively adds CMPs to the 3'-CCA end of tRNA. The crystal structure of MenT3 in complex with CTP reveals a CTP-specific nucleotide-binding pocket. The 4-NH2 and the N3 and O2 atoms of cytosine in CTP form hydrogen bonds with the main-chain carbonyl oxygen of P120 and the side chain of R238, respectively. MenT3 expression in Escherichia coli selectively reduces the levels of seryl-tRNASers, indicating specific inactivation of tRNASers by MenT3. Consistently, MenT3 incorporates CMPs into tRNASer most efficiently, among the tested E. coli tRNA species. The longer variable loop unique to class II tRNASers is crucial for efficient CMP incorporation into tRNASer by MenT3. Replacing the variable loop of E. coli tRNAAla with the longer variable loop of M. tuberculosis tRNASer enables MenT3 to incorporate CMPs into the chimeric tRNAAla. The N-terminal positively charged region of MenT3 is required for CMP incorporation into tRNASer. A docking model of tRNA onto MenT3 suggests that an interaction between the N-terminal region and the longer variable loop of tRNASer facilitates tRNA substrate selection.


Assuntos
Mycobacterium tuberculosis , RNA de Transferência , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/enzimologia , Especificidade por Substrato , RNA de Transferência/metabolismo , RNA de Transferência/química , Escherichia coli/genética , Escherichia coli/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Modelos Moleculares , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Citidina/química , Citidina/metabolismo , Sítios de Ligação , Cristalografia por Raios X , RNA Nucleotidiltransferases/metabolismo , RNA Nucleotidiltransferases/química , RNA Nucleotidiltransferases/genética
10.
Nucleic Acids Res ; 52(7): 3938-3949, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38477328

RESUMO

In the hypothetical RNA world, ribozymes could have acted as modern aminoacyl-tRNA synthetases (ARSs) to charge tRNAs, thus giving rise to the peptide synthesis along with the evolution of a primitive translation apparatus. We previously reported a T-boxzyme, Tx2.1, which selectively charges initiator tRNA with N-biotinyl-phenylalanine (BioPhe) in situ in a Flexible In-vitro Translation (FIT) system to produce BioPhe-initiating peptides. Here, we performed in vitro selection of elongation-capable T-boxzymes (elT-boxzymes), using para-azido-l-phenylalanine (PheAZ) as an acyl-donor. We implemented a new strategy to enrich elT-boxzyme-tRNA conjugates that self-aminoacylated on the 3'-terminus selectively. One of them, elT32, can charge PheAZ onto tRNA in trans in response to its cognate anticodon. Further evolution of elT32 resulted in elT49, with enhanced aminoacylation activity. We have demonstrated the translation of a PheAZ-containing peptide in an elT-boxzyme-integrated FIT system, revealing that elT-boxzymes are able to generate the PheAZ-tRNA in response to the cognate anticodon in situ of a custom-made translation system. This study, together with Tx2.1, illustrates a scenario where a series of ribozymes could have overseen aminoacylation and co-evolved with a primitive RNA-based translation system.


Assuntos
Anticódon , Biossíntese de Proteínas , RNA Catalítico , Aminoacil-RNA de Transferência , RNA Catalítico/metabolismo , RNA Catalítico/genética , Anticódon/genética , Aminoacil-RNA de Transferência/metabolismo , Aminoacil-RNA de Transferência/genética , Fenilalanina/metabolismo , Fenilalanina/análogos & derivados , Aminoacil-tRNA Sintetases/metabolismo , Aminoacil-tRNA Sintetases/genética , Aminoacilação de RNA de Transferência , Aminoacilação , Elongação Traducional da Cadeia Peptídica
11.
EMBO J ; 40(14): e106434, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34152017

RESUMO

Alternative splicing of pre-mRNAs can regulate gene expression levels by coupling with nonsense-mediated mRNA decay (NMD). In order to elucidate a repertoire of mRNAs regulated by alternative splicing coupled with NMD (AS-NMD) in an organism, we performed long-read RNA sequencing of poly(A)+ RNAs from an NMD-deficient mutant strain of Caenorhabditis elegans, and obtained full-length sequences for mRNA isoforms from 259 high-confidence AS-NMD genes. Among them are the S-adenosyl-L-methionine (SAM) synthetase (sams) genes sams-3 and sams-4. SAM synthetase activity autoregulates sams gene expression through AS-NMD in a negative feedback loop. We furthermore find that METT-10, the orthologue of human U6 snRNA methyltransferase METTL16, is required for the splicing regulation in␣vivo, and specifically methylates the invariant AG dinucleotide at the distal 3' splice site (3'SS) in␣vitro. Direct RNA sequencing coupled with machine learning confirms m6 A modification of endogenous sams mRNAs. Overall, these results indicate that homeostasis of SAM synthetase in C. elegans is maintained by alternative splicing regulation through m6 A modification at the 3'SS of the sams genes.


Assuntos
Processamento Alternativo/genética , Homeostase/genética , Ligases/genética , Metionina Adenosiltransferase/genética , Degradação do RNAm Mediada por Códon sem Sentido/genética , RNA Mensageiro/genética , S-Adenosilmetionina/metabolismo , Animais , Caenorhabditis elegans/genética , Metiltransferases/genética , Precursores de RNA/genética
12.
EMBO J ; 40(15): e107976, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34184765

RESUMO

Nuclear stress bodies (nSBs) are nuclear membraneless organelles formed around stress-inducible HSATIII architectural long noncoding RNAs (lncRNAs). nSBs repress splicing of hundreds of introns during thermal stress recovery, which are partly regulated by CLK1 kinase phosphorylation of temperature-dependent Ser/Arg-rich splicing factors (SRSFs). Here, we report a distinct mechanism for this splicing repression through protein sequestration by nSBs. Comprehensive identification of RNA-binding proteins revealed HSATIII association with proteins related to N6 -methyladenosine (m6 A) RNA modification. 11% of the first adenosine in the repetitive HSATIII sequence were m6 A-modified. nSBs sequester the m6 A writer complex to methylate HSATIII, leading to subsequent sequestration of the nuclear m6 A reader, YTHDC1. Sequestration of these factors from the nucleoplasm represses m6 A modification of pre-mRNAs, leading to repression of m6 A-dependent splicing during stress recovery phase. Thus, nSBs serve as a common platform for regulation of temperature-dependent splicing through dual mechanisms employing two distinct ribonucleoprotein modules with partially m6 A-modified architectural lncRNAs.


Assuntos
Proteínas do Tecido Nervoso/genética , Fatores de Processamento de RNA/genética , Splicing de RNA , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Núcleo Celular/genética , Células HeLa , Humanos , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sequências Repetitivas de Ácido Nucleico , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Temperatura
13.
Mol Cell ; 68(3): 528-539.e5, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100053

RESUMO

Nascent polypeptides can modulate the polypeptide elongation speed on the ribosome. Here, we show that nascent chains can even destabilize the translating Escherichia coli ribosome from within. This phenomenon, termed intrinsic ribosome destabilization (IRD), occurs in response to a special amino acid sequence of the nascent chain, without involving the release or the recycling factors. Typically, a consecutive array of acidic residues and those intermitted by alternating prolines induce IRD. The ribosomal protein bL31, which bridges the two subunits, counteracts IRD, such that only strong destabilizing sequences abort translation in living cells. We found that MgtL, the leader peptide of a Mg2+ transporter (MgtA), contains a translation-aborting sequence, which sensitizes the ribosome to a decline in Mg2+ concentration and thereby triggers the MgtA-upregulating genetic scheme. Translation proceeds at an inherent risk of ribosomal destabilization, and nascent chain-ribosome complexes can function as a Mg2+ sensor by harnessing IRD.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Biossíntese de Proteínas , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Magnésio/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Conformação Proteica , Estabilidade Proteica , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Ribossomos/química , Ribossomos/genética , Relação Estrutura-Atividade
14.
Nucleic Acids Res ; 51(6): e34, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36731515

RESUMO

The potential of synthetic mRNA as a genetic carrier has increased its application in scientific fields. Because the 5' cap regulates the stability and translational activity of mRNAs, there are concerted efforts to search for and synthesize chemically-modified 5' caps that improve the functionality of mRNA. Here, we report an easy and efficient method to synthesize functional mRNAs by modifying multiple 5' cap analogs using a vaccinia virus-capping enzyme. We show that this enzyme can introduce a variety of GTP analogs to the 5' end of RNA to generate 5' cap-modified mRNAs that exhibit different translation levels. Notably, some of these modified mRNAs improve translation efficiency and can be conjugated to chemical structures, further increasing their functionality. Our versatile method to generate 5' cap-modified mRNAs will provide useful tools for RNA therapeutics and biological research.


Assuntos
Nucleotidiltransferases , Capuzes de RNA , Vaccinia virus , Biossíntese de Proteínas , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , RNA Mensageiro/metabolismo , Vaccinia virus/enzimologia , Nucleotidiltransferases/química
15.
Nucleic Acids Res ; 51(14): 7563-7579, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-36928678

RESUMO

Mutations in mitochondrial (mt-)tRNAs frequently cause mitochondrial dysfunction. Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), and myoclonus epilepsy associated with ragged red fibers (MERRF) are major clinical subgroups of mitochondrial diseases caused by pathogenic point mutations in tRNA genes encoded in mtDNA. We previously reported a severe reduction in the frequency of 5-taurinomethyluridine (τm5U) and its 2-thiouridine derivative (τm5s2U) in the anticodons of mutant mt-tRNAs isolated from the cells of patients with MELAS and MERRF, respectively. The hypomodified tRNAs fail to decode cognate codons efficiently, resulting in defective translation of respiratory chain proteins in mitochondria. To restore the mitochondrial activity of MELAS patient cells, we overexpressed MTO1, a τm5U-modifying enzyme, in patient-derived myoblasts. We used a newly developed primer extension method and showed that MTO1 overexpression almost completely restored the τm5U modification of the MELAS mutant mt-tRNALeu(UUR). An increase in mitochondrial protein synthesis and oxygen consumption rate suggested that the mitochondrial function of MELAS patient cells can be activated by restoring the τm5U of the mutant tRNA. In addition, we confirmed that MTO1 expression restored the τm5s2U of the mutant mt-tRNALys in MERRF patient cells. These findings pave the way for epitranscriptomic therapies for mitochondrial diseases.


Assuntos
Síndrome MELAS , Síndrome MERRF , RNA de Transferência , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Síndrome MELAS/genética , Síndrome MELAS/metabolismo , Síndrome MELAS/terapia , Síndrome MERRF/genética , Síndrome MERRF/metabolismo , Síndrome MERRF/terapia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , RNA de Transferência/genética , RNA de Transferência/metabolismo
16.
Nucleic Acids Res ; 51(14): 7480-7495, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37439353

RESUMO

The 3243A > G in mtDNA is a representative mutation in mitochondrial diseases. Mitochondrial protein synthesis is impaired due to decoding disorder caused by severe reduction of 5-taurinomethyluridine (τm5U) modification of the mutant mt-tRNALeu(UUR) bearing 3243A > G mutation. The 3243A > G heteroplasmy in peripheral blood reportedly decreases exponentially with age. Here, we found three cases with mild respiratory symptoms despite bearing high rate of 3243A > G mutation (>90%) in blood mtDNA. These patients had the 3290T > C haplotypic mutation in addition to 3243A > G pathogenic mutation in mt-tRNALeu(UUR) gene. We generated cybrid cells of these cases to examine the effects of the 3290T > C mutation on mitochondrial function and found that 3290T > C mutation improved mitochondrial translation, formation of respiratory chain complex, and oxygen consumption rate of pathogenic cells associated with 3243A > G mutation. We measured τm5U frequency of mt-tRNALeu(UUR) with 3243A > G mutation in the cybrids by a primer extension method assisted with chemical derivatization of τm5U, showing that hypomodification of τm5U was significantly restored by the 3290T > C haplotypic mutation. We concluded that the 3290T > C is a haplotypic mutation that suppresses respiratory deficiency of mitochondrial disease by restoring hypomodified τm5U in mt-tRNALeu(UUR) with 3243A > G mutation, implying a potential therapeutic measure for mitochondrial disease associated with pathogenic mutations in mt-tRNAs.


Assuntos
Síndrome MELAS , Doenças Mitocondriais , Humanos , Síndrome MELAS/genética , Síndrome MELAS/metabolismo , RNA de Transferência de Leucina/metabolismo , Taurina , Haplótipos , Mutação , DNA Mitocondrial/genética , Doenças Mitocondriais/genética
17.
EMBO J ; 39(20): e104708, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32926445

RESUMO

Let-7 is an evolutionary conserved microRNA that mediates post-transcriptional gene silencing to regulate a wide range of biological processes, including development, differentiation, and tumor suppression. Let-7 biogenesis is tightly regulated by several RNA-binding proteins, including Lin28A/B, which represses let-7 maturation. To identify new regulators of let-7, we devised a cell-based functional screen of RNA-binding proteins using a let-7 sensor luciferase reporter and identified the tRNA pseudouridine synthase, TruB1. TruB1 enhanced maturation specifically of let-7 family members. Rather than inducing pseudouridylation of the miRNAs, high-throughput sequencing crosslinking immunoprecipitation (HITS-CLIP) and biochemical analyses revealed direct binding between endogenous TruB1 and the stem-loop structure of pri-let-7, which also binds Lin28A/B. TruB1 selectively enhanced the interaction between pri-let-7 and the microprocessor DGCR8, which mediates miRNA maturation. Finally, TruB1 suppressed cell proliferation, which was mediated in part by let-7. Altogether, we reveal an unexpected function for TruB1 in promoting let-7 maturation.


Assuntos
Proliferação de Células/genética , Transferases Intramoleculares/metabolismo , MicroRNAs/metabolismo , Processamento Pós-Transcricional do RNA/genética , Proteínas de Ligação a RNA/metabolismo , Motivos de Aminoácidos , Linhagem Celular Tumoral , Sobrevivência Celular , Técnicas de Silenciamento de Genes , Humanos , Imunoprecipitação , Transferases Intramoleculares/genética , MicroRNAs/genética , Ligação Proteica , Proteínas Recombinantes
18.
Nucleic Acids Res ; 50(8): 4713-4731, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35411396

RESUMO

Contact-dependent growth inhibition is a mechanism of interbacterial competition mediated by delivery of the C-terminal toxin domain of CdiA protein (CdiA-CT) into neighboring bacteria. The CdiA-CT of enterohemorrhagic Escherichia coli EC869 (CdiA-CTEC869) cleaves the 3'-acceptor regions of specific tRNAs in a reaction that requires the translation factors Tu/Ts and GTP. Here, we show that CdiA-CTEC869 has an intrinsic ability to recognize a specific sequence in substrate tRNAs, and Tu:Ts complex promotes tRNA cleavage by CdiA-CTEC869. Uncharged and aminoacylated tRNAs (aa-tRNAs) were cleaved by CdiA-CTEC869 to the same extent in the presence of Tu/Ts, and the CdiA-CTEC869:Tu:Ts:tRNA(aa-tRNA) complex formed in the presence of GTP. CdiA-CTEC869 interacts with domain II of Tu, thereby preventing the 3'-moiety of tRNA to bind to Tu as in canonical Tu:GTP:aa-tRNA complexes. Superimposition of the Tu:GTP:aa-tRNA structure onto the CdiA-CTEC869:Tu structure suggests that the 3'-portion of tRNA relocates into the CdiA-CTEC869 active site, located on the opposite side to the CdiA-CTEC869 :Tu interface, for tRNA cleavage. Thus, CdiA-CTEC869 is recruited to Tu:GTP:Ts, and CdiA-CT:Tu:GTP:Ts recognizes substrate tRNAs and cleaves them. Tu:GTP:Ts serves as a reaction scaffold that increases the affinity of CdiA-CTEC869 for substrate tRNAs and induces a structural change of tRNAs for efficient cleavage by CdiA-CTEC869.


Assuntos
Escherichia coli Êntero-Hemorrágica , Proteínas de Escherichia coli , Escherichia coli Êntero-Hemorrágica/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Inibidores do Crescimento , Guanosina Trifosfato/metabolismo , Proteínas de Membrana/metabolismo , Fator Tu de Elongação de Peptídeos/metabolismo , RNA de Transferência/metabolismo , Aminoacil-RNA de Transferência
19.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34642250

RESUMO

The tRNA pool determines the efficiency, throughput, and accuracy of translation. Previous studies have identified dynamic changes in the tRNA (transfer RNA) supply and mRNA (messenger RNA) demand during cancerous proliferation. Yet dynamic changes may also occur during physiologically normal proliferation, and these are less well characterized. We examined the tRNA and mRNA pools of T cells during their vigorous proliferation and differentiation upon triggering their antigen receptor. We observed a global signature of switch in demand for codons at the early proliferation phase of the response, accompanied by corresponding changes in tRNA expression levels. In the later phase, upon differentiation, the response of the tRNA pool relaxed back to the basal level, potentially restraining excessive proliferation. Sequencing of tRNAs allowed us to evaluate their diverse base-modifications. We found that two types of tRNA modifications, wybutosine and ms2t6A, are reduced dramatically during T cell activation. These modifications occur in the anticodon loops of two tRNAs that decode "slippery codons," which are prone to ribosomal frameshifting. Attenuation of these frameshift-protective modifications is expected to increase the potential for proteome-wide frameshifting during T cell proliferation. Indeed, human cell lines deleted of a wybutosine writer showed increased ribosomal frameshifting, as detected with an HIV gag-pol frameshifting site reporter. These results may explain HIV's specific tropism toward proliferating T cells since it requires ribosomal frameshift exactly on the corresponding codon for infection. The changes in tRNA expression and modifications uncover a layer of translation regulation during T cell proliferation and expose a potential tradeoff between cellular growth and translation fidelity.


Assuntos
Ativação Linfocitária , RNA de Transferência/metabolismo , Linfócitos T/imunologia , Proliferação de Células/genética , Códon , Mutação da Fase de Leitura , Humanos , Processamento Pós-Transcricional do RNA , Linfócitos T/citologia
20.
Biol Pharm Bull ; 46(12): 1714-1719, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-37853612

RESUMO

Postoperative ileus (POI) often decreases patients' QOL because of prolonged hospitalization and readmission. Alvimopan, a peripheral µ-opioid receptor antagonist, is currently the only therapeutic drug for POI. The aim of this study was to examine the efficacy of naldemedine (a peripheral µ-opioid receptor antagonist with a non-competitive pharmacological profile different from that of alvimopan) on postoperative intestinal hypomotility and adhesion in rodent models, and compare it with the effects of alvimopan. Oral administration of naldemedine (0.3 mg/kg) and alvimopan (3 mg/kg) significantly inhibited the decrease in intestinal motility induced by mechanical irritation in mice (p < 0.01, for both). Naldemedine (1 mg/kg) significantly shortened the adhesion length in chemical-induced postoperative adhesion model rats (p < 0.05). Alvimopan (3 mg/kg) also significantly reduced the adhesion ratio (p < 0.01). These findings suggest that naldemedine is effective for postoperative intestinal hypomotility and adhesions in rodents (i.e., as for alvimopan). Thus, naldemedine may be a useful option for the treatment of POI.


Assuntos
Íleus , Morfinanos , Humanos , Ratos , Camundongos , Animais , Antagonistas de Entorpecentes/farmacologia , Antagonistas de Entorpecentes/uso terapêutico , Roedores , Qualidade de Vida , Íleus/tratamento farmacológico , Íleus/etiologia , Morfinanos/uso terapêutico , Fármacos Gastrointestinais/uso terapêutico , Complicações Pós-Operatórias/tratamento farmacológico , Analgésicos Opioides/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA