Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Luminescence ; 38(7): 1221-1229, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35906759

RESUMO

The fluorescence intensity ratio (FIR) of two thermally coupled levels with temperature follows the Boltzmann equation and shows an exponential nature to the temperature that is purely dependent on the energy difference between the levels. Despite the identical energy difference between the thermally coupled levels, researchers have observed varying sensitivities for various samples. In this article, the FIR and sensitivities were calculated using the Boltzmann equation by changing various parameters such as energy difference (ΔE) and the value of the constant C. The results were compared with various reports for Er3+ /Yb3+ ions. After analysis, a new polynomial fit equation was used to determine the temperature sensitivities for the Er3+ /Yb3+ co-doped PbZrTiO3 phosphor in lieu of the conventional Boltzmann equation. The polynomial fit equation eliminated the dependency of the sensitivity on the inverse of the FIR factor and a flat sensitivity curve was obtained with temperature.


Assuntos
Cerâmica , Reprodutibilidade dos Testes , Temperatura
2.
Inorg Chem ; 59(2): 1405-1413, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31894695

RESUMO

The equivalent or heterovalent substitution strategy is an efficient way to stimulate photoluminescence tuning or to optimize the luminescence performances of phosphor materials. Garnet-type compounds receive much attention as phosphor hosts because of their flexible structural frameworks. Herein, a garnet-type Lu2MgAl4SiO12:Eu2+ phosphor with broad-band blue-green emission is first explored with two-site occupation by varying the Eu2+ content. Two host-substitution approaches to controlling the luminescence behavior of Lu2MgAl4SiO12:Eu2+ phosphor are implemented. The cation substitution strategy of Ca2+ for Mg2+ achieves tunable emission from 463 to 503 nm together with broadening emission bands in Lu2Mg1-yCayAl4SiO12:Eu2+ phosphors. Moreover, chemical unit cosubstitution of [Ca2+-Ge4+] replacing [Lu3+-Al3+] results in Lu2-zCazMgAl4-zGezSiO12:Eu2+ phosphors, which induce a red shift of the emission peak of about 60 nm and a broadening in the emission spectra with increasing Ca2+ and Ge4+ concentrations. The possible photoluminescence tuning mechanism is ascribed to the coordination sphere variation in the EuO8 polyhedron depending on the changing neighboring cations. The proposed approaches on equivalent or heterovalent substitution can contribute to the development of Eu2+-activated garnet-type phosphors with regulation of the luminescence performance and further initiate research discovering new phosphors for white-light-emitting diodes.

3.
Inorg Chem ; 58(5): 3073-3089, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30789252

RESUMO

Pristine and Eu3+-doped BaZrO3 were synthesized via a solid-state reaction method, and the synthesized samples were systematically characterized. X-ray diffraction confirmed the formation of single and pure phases of cubic-structured BaZrO3. Extended X-ray absorption fine structure (EXAFS) spectroscopy revealed the site occupancy of Eu3+ and coordination environment around the different atomic sites. Photoluminescence (PL) excitation and emission spectra revealed the dominant absorption at 275 nm and a broad emission centered at 400 nm due to oxygen vacancies below the conduction band (CB). The PL emission intensity at 597 nm increased with increasing Eu3+ doping concentration; simultaneously, emission from the defect level decreased. This confirmed the efficient energy transfer from oxygen vacancies to Eu3+. Density functional theory was employed to calculate the density of states (DOS) to explain the mechanisms of the PL phenomenon. DOS also showed the presence of impurity states due to Eu3+ doping within the band-gap region. The coincidence of the oxygen vacancy state with Eu f state at the bottom of the CB confirmed the PL energy-transfer mechanisms from the oxygen vacancy to europium. The excited-state lifetime values of the 5D0 state decreased with increasing doping concentration due to the increase of the nonradiative transition rate. The internal quantum efficiency, small excited-state lifetime, and photometric parameters indicated that 3 mol % Eu3+-doped BaZrO3 can be a suitable candidate for the red-light-emitting device applications.

4.
Inorg Chem ; 57(1): 288-299, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29227098

RESUMO

Motivated from our previous studies on the upconversion properties of BaMgF4:Yb3+,Tb3+ phosphor, here we investigated the upconversion properties of BaMgF4:Yb3+,Er3+ phosphor. We demonstrate a two-way versatile approach for the fine-tuning of emission from green to the red region, by varying the dopant concentration and adjusting the pulse width of an infrared laser. The mechanism involved in tuning the emission color by laser power and pulse width variation was illustrated in detail. The temperature dependent upconversion spectra were studied by analyzing the fluorescence intensity ratio of the thermally coupled levels. The maximum sensitivity obtained is 83.29 × 10-4 K-1 at 583 K, which is much higher than the temperature sensitivity reported for other fluoride based materials. Moreover, the influence of the excitation power density on the ability of the phosphor for temperature sensing was also investigated. We obtained a maximum (∼415 K) temperature detection at 2563 mW laser power. The obtained results illustrate the potential use of BaMgF4:Yb3+,Er3+ phosphor in an optical thermometer due to its highly sensitive temperature detection ability.

5.
Small ; 13(38)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28841269

RESUMO

Nanoparticles of face-centered cubic Cu are modeled using the Sutton-Chen potential. Shapes ranging from perfect cubes through to octahedrons are modeled and characterized. Bulk properties, surface energies, vacancy formation energy, Ev , and cohesive energies, Ecoh , are investigated for particles simulated to up to 5 nm in diameter. Below the subsurface layers, particles larger than 1 nm diameter are compared well to bulk. Of the different shapes, rhombicuboctahedrons are both more stable and have more reactive surfaces. As Ev is dependent on surface orientation, there is a little correlation with size and Ev is mostly dependent on nanoparticle shape. Ecoh is not as dependent on surface orientation and shows both size and shape dependency.

6.
Inorg Chem ; 56(9): 4996-5005, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28406623

RESUMO

In this work we have comprehensively studied the up-conversion (UC) properties of BaMgF4:Yb3+,Tb3+ phosphor for the first time. BaMgF4:Yb3+,Tb3+ phosphors were prepared by a simple and low cost precipitation method. To determine the influence of dopant concentration on luminescence properties, the corresponding UC luminescence spectra of BaMgF4:Yb3+,Tb3+ phosphors were studied under NIR excitation. Emission spectra under NIR excitation reveal the vital role of Tb3+ concentration in spectral tuning from the blue to green region. The UC decay curves were also studied to explore the possible energy transfer (ET) mechanisms between Yb3+ and Tb3+. The results reported here are expected to provide an approach for better understanding ET mechanisms in many Yb3+/Tb3+ codoped UC phosphors. This study will be helpful in applications where precisely defined optical transitions is an essential criterion.

7.
Microsc Microanal ; 20(1): 4-13, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24423105

RESUMO

Filament condition during hot-wire chemical vapor deposition conditions of multi-walled carbon nanotubes is a major concern for a stable deposition process. We report on the novel application of electron backscatter diffraction to characterize the carburization of tungsten filaments. During the synthesis, the W-filaments transform to W2C and WC. W-carbide growth followed a parabolic behavior corresponding to the diffusion of C as the rate-determining step. The grain size of W, W2C, and WC increases with longer exposure time and increasing filament temperature. The grain size of the recrystallizing W-core and W2C phase grows from the perimeter inwardly and this phenomenon is enhanced at filament temperatures in excess of 1,400°C. Cracks appear at filament temperatures >1,600°C, accompanied by a reduction in the filament operational lifetime. The increase of the W2C and recrystallized W-core grain size from the perimeter inwardly is ascribed to a thermal gradient within the filament, which in turn influences the hardness measurements and crack formation.

8.
ACS Omega ; 9(6): 6325-6338, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38371839

RESUMO

Although most semiconductor metal oxides including In2O3 show acceptable sensitivity to volatile organic compounds, it is difficult to detect ethanol effectively at low operating temperatures and detection levels. In this study, pure and Co-, Ni-, and Cu-doped In2O3 products with their doping content maintained at 1 mol % were successfully produced using a hydrothermal approach. Explicit contrast on the structural, microstructural, and textural properties of the synthesized In2O3 products was examined to determine their gas sensing performance. The Cu-doped In2O3 sensor demonstrated improved response of 15.3 to 50 ppm ethanol and has satisfactory selectivity, stability, low detection limit of 0.2, humidity resistance, and decreased working temperature of 80 °C compared to 150 °C of the pure In2O3 sensor. This optimal gas sensing performance is derived from the cube-like morphology assembled with interlinked nanoparticles, which favors trapping more target gas molecules and exposing more active sites, thereby greatly improving its sensing ability. This study showed that the Cu-doped In2O3 sensor with 1 mol % is suitable for monitoring ethanol gas for food safety applications.

9.
Dalton Trans ; 53(28): 11736-11749, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38932632

RESUMO

Visualization of latent fingerprints (LFPs) using conventional powders has faced challenges on multicolor surfaces. However, these challenges are addressed by the advent of fluorescent powders in LFP detection, and they have redefined the effectiveness of the powder dusting method. In this study, color-tunable YOF:Tb3+,Eu3+ nanophosphors were examined for LFP recognition and were evaluated for their practicality on different types of surfaces. Under 254 nm UV irradiation, the LFPs developed using these nanophosphors showed clear and distinct ridge patterns with level 1, 2, and 3 details. The ultrafine particles of these nanophosphors adhered to the ridge patterns and replicated the minutiae of the LFPs. Meanwhile, the variation of the Tb3+/Eu3+ ratio demonstrated multicolor fluorescence emission from the nanophosphors, which provided better contrast between the ridge patterns on complex surfaces. Furthermore, the high luminescence quantum yield of the nanophosphors ensured high-resolution fluorescence images of the LFPs with a well-defined pattern that was recognizable even without any microscope or sophisticated instrumentation.

10.
Dalton Trans ; 53(10): 4551-4563, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38349055

RESUMO

We report on the synthesis, photoluminescence optimization and thermometric properties of Sr3Al2O5Cl2:Eu2+ and SrAl2O4:Eu2+ phosphor powders. The photoluminescence of Sr2.9Al2O5Cl2:0.1Eu2+ phosphors exhibits a blue-shift with an increasing annealing temperature owing to a decrease in the crystal field strength of the host caused by evaporation of Cl from the material. The quenching of the blue band in favour of the red band observed in the luminescence spectra of Sr2.9Al2O5Cl2:0.1Eu2+ with an increased annealing temperature was explained using the mechanism of the Landau-Zener transitions. The quantum yield and the lifetime of the phosphors depend on the annealing temperature. Phosphor samples annealed at 850 °C, 1000 °C, 1200 °C and 1500 °C were found to be potential luminescence thermometers using the luminescence spectral method. For Sr3Al2O5Cl2:Eu2+ annealed at 1000 °C, the temperature-dependent dual-band intensity ratio demonstrated a high-temperature sensitivity of ∼1.47%/°C in the temperature range of 23 °C to 40 °C which is superior to other reported phosphors with a microsecond decay time, suggesting that the material has potential for sensitive thermometry applications at ambient temperatures.

11.
Sci Rep ; 14(1): 17758, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39085345

RESUMO

The structural, surface, and upconversion (UC) luminescence properties of Y2O3:Ho3+,Yb3+ films grown by pulsed laser deposition, for different numbers of laser pulses, were studied. The crystallinity, surface, and UC luminescence properties of the thin films were found to be highly dependent on the number of laser pulses. The X-ray powder diffraction analysis revealed that Y2O3:Ho3+,Yb3+ films were formed in a cubic structure phase with an Ia 3 ¯ space group. The thicknesses of the films were estimated by using cross-sectional scanning electron microscopy, depth profiles using X-ray photoelectron spectroscopy (XPS), and the Swanepoel method. The high-resolution XPS was used to determine the chemical composition and oxidation states of the prepared films. The UC emissions were observed at 538, 550, 666, and 756 nm, assigned to the 5F4 → 5I8, 5S2 → 5I8, 5F5 → 5I8, and 5S2 → 5I7 transitions of the Ho3+ ions. The power dependence measurements confirmed the involvement of a two-photon process in the UC process. The color purity estimated from the Commission International de I'Eclairage coordinates confirmed strong green UC emission. The results suggested that the Y2O3:Ho3+,Yb3+ UC transparent films are good candidates for various applications, including solar cell applications.

12.
Can J Microbiol ; 59(6): 413-6, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23750956

RESUMO

According to literature, the elongated ascospores of Dipodascopsis uninucleata var. uninucleata exhibit smart movement when forcefully ejected from bottle-shaped asci. This type of movement is defined as the unique patterns of non-random movement of ascospores with specialized morphology thereby facilitating release from asci. Smart movement is required to actively release ascospores individually through the narrow ascus neck, without causing an obstruction and blocking ascospore release. However, little is known about the propulsion mechanism of this cannon-type release system. We show that asci of this yeast contain a central channel (barrel) filled with ascospores. These are surrounded by a sheath-like structure that lines the inner surface of the ascus wall. We found that this sheath is responsible for forcing the naked ascospores out of the ascus by exerting turgor pressure from the bottom towards the tip of the ascus. This cannon firing system is in contrast to that found in Dipodascus geniculatus, where no sheaths lining the ascus interior were observed. Instead, sheaths were found enveloping each ascospore.


Assuntos
Saccharomycetales/citologia , Saccharomycetales/fisiologia , Esporos Fúngicos/fisiologia , Pressão , Esporos Fúngicos/ultraestrutura
13.
ACS Appl Mater Interfaces ; 15(37): 43985-43993, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37674324

RESUMO

More complete recycling of plastic waste is possible only if new technologies that go beyond state-of-the-art near-infrared (NIR) sorting are developed. For example, tracer-based sorting is a new technology that explores the upconversion or down-shift luminescence of special tracers based on inorganic materials codoped with lanthanide ions. Specifically, down-shift tracers emit in the shortwave infrared (SWIR) spectral range and can be detected using a SWIR camera preinstalled in a state-of-the-art sorting machine for NIR sorting. In this study, we synthesized a very efficient SWIR tracer by codoping Li3Ba2Gd3 (MoO4)8 with Yb3+ and Er3+, where Yb3+ is a synthesizer ion (excited near 976 nm) and Er3+ emits near 1550 nm. Fine-tuning of the doping concentration resulted in a tracer (Li3Ba2Gd(3-x-y)(MoO4)8:xYb3+, yEr3+, where x = 0.2 and y = 0.4) with a high photoluminescence quantum yield for 1550 nm emission of 70% (using 976 nm excitation). This tracer was used to mark plastic objects. When the object was illuminated by a halogen lamp and a 976 nm laser, the three parts could be easily distinguished based on reflectance and luminescence spectra in the SWIR range: a plastic bottle made of polyethylene terephthalate, a bottle cap made of high-density polyethylene, and a label made of the tracer Li3Ba2Gd3(MoO4)8:Yb3+, Er3+. Importantly, the use of the tracer in sorting may require only the installation of a 976 nm laser in a state-of-the-art NIR sorting system.

14.
Mater Today Bio ; 23: 100860, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38179230

RESUMO

The extraordinary and unique properties of persistent luminescent (PerLum) nanostructures like storage of charge carriers, extended afterglow, and some other fascinating characteristics like no need for in-situ excitation, and rechargeable luminescence make such materials a primary candidate in the fields of bio-imaging and therapeutics. Apart from this, due to their extraordinary properties they have also found their place in the fields of anti-counterfeiting, latent fingerprinting (LPF), luminescent markings, photocatalysis, solid-state lighting devices, glow-in-dark toys, etc. Over the past few years, persistent luminescent nanoparticles (PLNPs) have been extensively used for targeted drug delivery, bio-imaging guided photodynamic and photo-thermal therapy, biosensing for cancer detection and subsequent treatment, latent fingerprinting, and anti-counterfeiting owing to their enhanced charge storage ability, in-vitro excitation, increased duration of time between excitation and emission, low tissue absorption, high signal-to-noise ratio, etc. In this review, we have focused on most of the key aspects related to PLNPs, including the different mechanisms leading to such phenomena, key fabrication techniques, properties of hosts and different activators, emission, and excitation characteristics, and important properties of trap states. This review article focuses on recent advances in cancer theranostics with the help of PLNPs. Recent advances in using PLNPs for anti-counterfeiting and latent fingerprinting are also discussed in this review.

15.
FEMS Yeast Res ; 12(7): 867-9, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23020660

RESUMO

Current paradigms assume that gas bubbles cannot be formed within yeasts although these workhorses of the baking and brewing industries vigorously produce and release CO(2) gas. We show that yeasts produce gas bubbles that fill a significant part of the cell. The missing link between intracellular CO(2) production by glycolysis and eventual CO(2) release from cells has therefore been resolved. Yeasts may serve as model to study CO(2) behavior under pressurized conditions that may impact on fermentation biotechnology.


Assuntos
Dióxido de Carbono/metabolismo , Citoplasma/metabolismo , Gases/metabolismo , Saccharomyces/metabolismo , Glicólise
16.
J Phys Chem A ; 116(36): 9158-80, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22881828

RESUMO

In the present work, we report on the combined experimental and theoretical studies of the 4f-5d spectra of Ce(3+), Pr(3+), Nd(3+), Eu(3+), Gd(3+), Tb(3+), Dy(3+), and Er(3+) ions in a newly synthesized K3YF6 matrix. The low temperature experimental 4f-5d excitation spectra have been analyzed and compared with the results of the energy-level and intensity calculations. For this theoretical analysis, the extended phenomenological crystal-field model for the 4f(N-1)5d configuration (i.e., the extended f-shell programs, developed by Prof. M. F. Reid) and exchange charge model (developed by Prof. B. Z. Malkin) have been used together to estimate the crystal field parameters and implement the spectral simulations. On the basis of the results of the performed theoretical analysis, we suggest the most probable positions occupied by optically active ions. Although the spectra of only eight lanthanide ions have been studied, the Hamiltonian parameters of the 4f(N-1)5d configuration have been evaluated for the whole lanthanide series and reported here for the first time, to give a complete and unified description of the spectroscopic properties of the trivalent rare earth ions in the chosen host. In addition to the studies of the 4f-5d transitions, various possible competitive excitation channels overlapping with 4f-5d ones have also been discussed, where a theoretical scheme giving rudiments to understand 4f-6s spectra are proposed for the first time. An excellent agreement between the calculated and measured excitation spectra shapes confirms validity of the performed analysis. The obtained parameters of the crystal field Hamiltonians for different ions and various electron configurations can be used in a straightforward way to generate the energy level positions and calculate the particular transition intensities for any rare earth ion in any particular spectral region. With the aid of the obtained parameters, the positions of the lowest energy levels of the 4f(N), 4f(N-1)5d ,and 4f(N-1)6s configurations of rare earth ions and 4f(N+1)(np)(5) configuration of rare earth ions and ligands (corresponding to the ligand-impurity ion charge transfer transitions) in the band gap of K3YF6 have all been estimated. The obtained Hamiltonian parameters and energy levels diagrams, which include the electronic structure of a host material, can be used as a starting point for analysis of spectroscopic properties of trivalent lanthanides in similar fluorides.

17.
Sensors (Basel) ; 12(10): 13058-74, 2012 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-23201985

RESUMO

In this study the mitochondrion is regarded as a target to reveal compounds that may be used to combat various diseases. Consequently, the sexual structures of yeasts (with high mitochondrial activity) were identified as sensors to screen for various anti-mitochondrial drugs that may be toxic to humans and that are directed, amongst others, against fungal diseases and cancer. Strikingly, these sensors indicated that chloroquine is a potent pro-mitochondrial drug which stimulated yeast sexual reproduction. In addition, these sensors also showed that some Non-Steroidal Anti-Inflammatory drugs (NSAIDs), anti-malarial drugs, antifungal and anticancer drugs are anti-mitochondrial. These yeast sensor bio-assays may fast track studies aimed at discovering new drugs as well as their mechanisms and should now be further evaluated for selectivity towards anti-/ pro-mitochondrials, fertility drugs and contraceptives, using in vitro, in vivo, in silico and omics research.


Assuntos
Bioensaio/métodos , Técnicas Biossensoriais/métodos , Cloroquina/isolamento & purificação , Descoberta de Drogas/métodos , Leveduras/fisiologia , Antifúngicos/isolamento & purificação , Antineoplásicos/isolamento & purificação , Eremothecium/fisiologia , Humanos , Lipomyces/fisiologia , Mitocôndrias/efeitos dos fármacos
18.
ACS Omega ; 7(27): 23401-23411, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35847302

RESUMO

The preparation, characterization, and photocatalytic application of tungsten or molybdenum carbides (Ni-WC, 1, Co-WC, 2, Ni-MoC, 3, Co-MoC, 4, NiCo-WC, 5, NiCo-MoC, 6, NiFe-WC, 7, and NiFe-MoC, 8) doped with transition metals (Fe, Co, and Ni) are reported. These transition-metal carbide (TMC) particles show that the submicrometer globular particles agglomerated to form larger particles, with smaller crystallites present on the surface of the large particles. These crystallite sizes range between 4 and 34 nm (as calculated from X-ray diffraction data) depending on the metal dopant and type of carbide. Oxidation of the metal carbides is evident from the two sets of photoelectron lines present in the X-ray photoelectron spectroscopy (XPS) of the W 4f area. The Mo 3d spectra reveal four sets of photoelectron lines associated with oxidized MoO2 and MoO3 as well as Mo2+ and Mo3+ associated with MoC1-x . The XPS of the dopant metals Ni, Co, and Fe also show partial oxidation. The photocatalytic decomposition of Congo red (an azo dye) is used as a model reaction to determine the photocatalytic activities of the transition-metal carbides, which is related to the TMCs' optical band gap energies.

19.
Dalton Trans ; 51(30): 11515-11525, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35838125

RESUMO

Rare earth (RE) doped perovskite oxide hosts especially titanates, are promising phosphor materials in terms of white-light emission owing to their extraordinary properties such as an exceptional hosting environment for RE-ions and a switchable crystal phase near the phase boundary. Here, we report a new strategy of crystal phase modification to enhance the blue upconversion (UC) efficiency to such an extent that the combinational mixing of blue and green/red-emitting phosphor gives intense white emission. The Lead free (Ba0.85Ca0.15)(Zr,Ti)O3 ceramics were synthesised at different sintering temperatures by incorporation of Tm3+/Yb3+ ions as dopants. The UC quantum efficiency of the Tm3+/Yb3+:BCZT sample sintered at 1300 °C was recorded at different excitation power densities. It was observed that the crystal phase transformation from tetragonal to rhombohedral symmetry in the sample near the phase boundary plays a cruicial role in improving the quantum efficiency. White-light emission applications were demonstrated by preparing biphasic samples with powder mixing of a BCZT:Tm3+/Yb3+ (blue-emitting) + BCZT:Er3+/Yb3+ (green/red-emitting) phosphor, and their composition were optimised at a mixed ratio. Thereafter, photometric characterization (CIE chromaticity, colour purity and corelated colour temperatures) was performed, and it indicated the suitability of the current biphasic samples in direct white-light (cooler) applications on an industrial scale. Crystal phase modified blue emission efficiency enhancement is a key feature of this work, which helps to generate approximately pure white-light with ideal chromacity (∼0.333, 0.343) emission when Tm3+/Yb3+:BCZT is mixed with a green emitting BCZT:Er3+/Yb3+ phosphor.

20.
Dalton Trans ; 51(7): 2827-2839, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35094041

RESUMO

Borate oxyfluoride glasses are transparent in the infrared, ultraviolet and visible regions and represent an ideal host matrix for optically active dopants. Due to their lower phonon energies compared to a silicate glass matrix, non-radiative transitions are suppressed and high luminescence efficiency is expected. This work reports on a complete upconversion (UC) luminescence study of the optically active B2O3-Al2O3-KF-LiO (BAKL) glass-ceramics incorporated with Er3+/Yb3+ ions. The triclinic BAKL:Er3+/Yb3+ glass-ceramic (GC) phosphor was synthesized using the conventional melt-quenching technique and the subsequent heat treatment of the precursor glass. The successful synthesis of BAKL:Er3+/Yb3+ GCs was confirmed by X-ray diffraction, Fourier transform infra-red and differential thermal analysis measurements. The glasses were crystallized under controlled conditions, and the influence of phase composition (glass-to-crystalline phase ratio) on the wavelength and UC luminescence was thoroughly studied under 980 nm excitation. Interesting color tuning properties (white to intense green emission) of the sample were observed with laser pump power increment. The color tuning properties were explained using a new strategy i.e. the energy bridging mechanism between Er3+ ion clusters through an intermediate Yb3+ level. Moreover, their high color purity is well retained by varying the NIR excitation pump power densities and photometric characterization indicated the suitability in light emitting diodes and Er3+ doped fiber amplifier applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA