RESUMO
The aim of this study was to evaluate the impact of multi-walled carbon nanotubes (MWCNTs), before and after chemical surface functionalization on muscle cell response in vitro and in vivo conditions. Prior to biological tests the surface physicochemical properties of the carbon nanotubes (CNTs) deposited on a polymer membrane were investigated. To 'evaluate microstructure and structure of CNTs scanning electron microscopy (SEM) and Fourier transformation infrared spectroscopy (FTIR) were used. During in vitro study CNTs deposited on polymer membrane were contacted directly with myoblast cells, and after 7 days of culture cytotoxicity of samples was analyzed. Moreover, cell morphology in contact with CNTs was observed using SEM and fluorescence microscopy. The cytotoxicity of CNTs modified in a different way was comparable and significantly lower in comparison with pure polymer membrane. Microscopy analysis of cultured myoblasts confirms intense cell proliferation of all investigated samples with CNTs while for two kinds of CNTs myoblasts' differentiation into myotubes was observed. Histochemical reactions for the activity of enzymes such as acid phosphatase, cytochrome C oxidase, and non-specific esterase allowed the analysis of the extent of inflammation, degree of regeneration process of the muscle fibers resulting from the presence of the satellite cells and the neuromuscular junction on muscle fibers in contact with CNTs after implantation of CNTs into gluteal muscle of rat.
Assuntos
Músculos/citologia , Nanotubos de Carbono , Animais , Linhagem Celular , Camundongos , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
The aim of this study was to evaluate the impact of multi-walled carbon nanotubes (MWCNTs with diameter in the range of 10-30 nm) before and after chemical surface functionalisation on macrophages response. The study has shown that the detailed analysis of the physicochemical properties of this particular form of carbon nanomaterial is a crucial issue to interpret properly its impact on the cellular response. Effects of carbon nanotubes (CNTs) characteristics, including purity, dispersity, chemistry and dimension upon the nature of the cell environment-material interaction were investigated. Various techniques involving electron microscopy (SEM, TEM), infrared spectroscopy (FTIR), inductively coupled plasma optical emission spectrometry, X-ray photoelectron spectroscopy have been employed to evaluate the physicochemical properties of the materials. The results demonstrate that the way of CNT preparation prior to biological tests has a fundamental impact on their behavior, cell viability and the nature of cell-nanotube interaction. Chemical functionalisation of CNTs in an acidic ambient (MWCNT-Fs) facilitates interaction with cells by two possible mechanisms, namely, endocytosis/phagocytosis and by energy-independent passive process. The results indicate that MWCNT-F in macrophages may decrease the cell proliferation process by interfering with the mitotic apparatus without negative consequences on cell viability. On the contrary, the as-prepared MWCNTs, without any surface treatment produce the least reduction in cell proliferation with reference to control, and the viability of cells exposed to this sample was substantially reduced with respect to control. A possible explanation of such a phenomenon is the presence of MWCNT's agglomerates surrounded by numerous cells releasing toxic substances.