Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Neurochem ; 168(7): 1281-1296, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38339787

RESUMO

Insect neuronal nicotinic acetylcholine receptors (nAChRs) are transmembrane receptors that play a key role in the development and synaptic plasticity of both vertebrates and invertebrates and are considered to be major targets of neonicotinoid insecticides. We used dorsal unpaired median (DUM) neurons, which are insect neurosecretory cells, in order to explore the intracellular mechanisms leading to the regulation of insect neuronal nAChRs in more detail. Using whole-cell patch-clamp and fura-2AM calcium imaging techniques, we found that a novel CaMKK/AMPK pathway could be involved in the intracellular regulation of DUM neuron nAChRs. The CaMKK selective inhibitor, STO, reduced nicotinic current amplitudes, and strongly when co-applied with α-Bgt. Interestingly, intracellular application of the AMPK activator, A-76, prevented the reduction in nicotine-induced currents observed in the presence of the AMPK inhibitor, dorsomorphin. STO prevented the increase in intracellular calcium induced by nicotine, which was not dependent on α-Bgt. Currents induced by 1 mM LMA, a selective activator of nAChR2, were reduced under bath application of STO, and mecamylamine, which blocked nAChR2 subtype, inhibited the increase in intracellular calcium induced by LMA. These findings provide insight into potential complex mechanisms linked to the modulation of the DUM neuron nAChRs and CaMKK pathway.


Assuntos
Cálcio , Nicotina , Animais , Nicotina/farmacologia , Cálcio/metabolismo , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/efeitos dos fármacos , Agonistas Nicotínicos/farmacologia , Técnicas de Patch-Clamp , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Naftalimidas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Benzimidazóis
2.
BMC Genomics ; 23(1): 463, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35733088

RESUMO

BACKGROUND: Ticks represent a major health issue for humans and domesticated animals. Exploring the expression landscape of the tick's central nervous system (CNS), known as the synganglion, would be an important step in understanding tick physiology and in managing tick-borne diseases, but studies on that topic are still relatively scarce. Neuron-specific genes like the cys-loop ligand-gated ion channels (cys-loop LGICs, or cysLGICs) are important pharmacological targets of acaricides. To date their sequence have not been well catalogued for ticks, and their phylogeny has not been fully studied. RESULTS: We carried out the sequencing of transcriptomes of the I. ricinus synganglion, for adult ticks in different conditions (unfed males, unfed females, and partially-fed females). The de novo assembly of these transcriptomes allowed us to obtain a large collection of cys-loop LGICs sequences. A reference meta-transcriptome based on synganglion and whole body transcriptomes was then produced, showing high completeness and allowing differential expression analyses between synganglion and whole body. Many of the genes upregulated in the synganglion were associated with neurotransmission and/or localized in neurons or the synaptic membrane. As the first step of a functional study of cysLGICs, we cloned the predicted sequence of the resistance to dieldrin (RDL) subunit homolog, and functionally reconstituted the first GABA-gated receptor of Ixodes ricinus. A phylogenetic study was performed for the nicotinic acetylcholine receptors (nAChRs) and other cys-loop LGICs respectively, revealing tick-specific expansions of some types of receptors (especially for Histamine-like subunits and GluCls). CONCLUSIONS: We established a large catalogue of genes preferentially expressed in the tick CNS, including the cysLGICs. We discovered tick-specific gene family expansion of some types of cysLGIC receptors, and a case of intragenic duplication, suggesting a complex pattern of gene expression among different copies or different alternative transcripts of tick neuro-receptors.


Assuntos
Ixodes , Canais Iônicos de Abertura Ativada por Ligante , Receptores Nicotínicos , Animais , Feminino , Ixodes/genética , Canais Iônicos de Abertura Ativada por Ligante/genética , Masculino , Filogenia , Receptores Nicotínicos/genética , Transcriptoma
3.
Pestic Biochem Physiol ; 184: 105126, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35715064

RESUMO

Synthetic insecticides continue to be the main strategy for managing insect pests, which are a major concern for both crop protection and public health. As nicotinic acetylcholine receptors play a central role in insect neurotransmission, they are the molecular target of neurotoxic insecticides such as neonicotinoids. These insecticides are used worldwide and have shown high efficiency in culture protection. However, the emergence of insect resistance mechanisms, and negative side-effects on non-target species have highlighted the need for a new control strategy. In this context, the use of insecticide mixtures with synergistic effects have been used in order to decrease the insecticide dose, and thus delay the selection of resistance-strains, and limit their negative impact. In this review, we summarize the available data concerning the mode of action of neonicotinoid mixtures, as well as their toxicity to various insect pests and non-target species. We found that insecticide mixtures containing neonicotinoids may be an effective strategy for limiting insect pests, and in particular resistant strains, although they could also negatively impact non-target species such as pollinating insects.


Assuntos
Inseticidas , Receptores Nicotínicos , Animais , Insetos , Resistência a Inseticidas , Inseticidas/toxicidade , Neonicotinoides/toxicidade
4.
Int J Mol Sci ; 22(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34576043

RESUMO

The functional expression of the cockroach Pameα7 nicotinic acetylcholine receptor subunit has been previously studied, and was found to be able to form a homomeric receptor when expressed in Xenopus laevis oocytes. In this study, we found that the neonicotinoid insecticide imidacloprid is unable to activate the cockroach Pameα7 receptor, although thiacloprid induces low inward currents, suggesting that it is a partial agonist. In addition, the co-application or 5 min pretreatment with 10 µM imidacloprid increased nicotine current amplitudes, while the co-application or 5 min pretreatment with 10 µM thiacloprid decreased nicotine-evoked current amplitudes by 54% and 28%, respectively. This suggesting that these two representatives of neonicotinoid insecticides bind differently to the cockroach Pameα7 receptor. Interestingly, the docking models demonstrate that the orientation and interactions of the two insecticides in the cockroach Pameα7 nAChR binding pocket are very similar. Electrophysiological results have provided evidence to suggest that imidacloprid and thiacloprid could act as modulators of the cockroach Pameα7 receptors.


Assuntos
Inseticidas/farmacologia , Neonicotinoides/farmacologia , Antagonistas Nicotínicos/farmacologia , Nitrocompostos/farmacologia , Tiazinas/farmacologia , Animais , Baratas/efeitos dos fármacos , Agonistas Nicotínicos/farmacologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Receptores Nicotínicos , Xenopus laevis
5.
Pestic Biochem Physiol ; 168: 104633, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32711767

RESUMO

Some quinuclidine benzamide compounds have been found to modulate nicotinic acetylcholine receptors in both mammals and insects. In particular, the quaternarization of 3-amino quinuclidine benzamide derivatives with dichloromethane gave charged N-chloromethylated quinuclidine compounds, disclosing an antagonist profile on homomeric α7 nAChRs. Here, we synthesized and studied the toxicological effect of LMA10233, a quinuclidine-borane complex analogue, the LMA10233, on the pea aphid Acyrthosiphon pisum and found that LMA10233 only exhibit proper toxicity on A. pisum larvae when applied in concentrations of over 10 µg/ml. We assessed the ability of LMA10233 to enhance the toxicity of different insecticides. When a sublethal concentration of LMA10233 was combined with the LC10 of each compound, we found a strong increase in toxicity at 24 h and 48 h of exposure for clothianidin, fipronil and chlorpyrifos, and only at 24 h for imidacloprid, acetamiprid and deltamethrin. However, when the pesticide was used at the LC50, only acetamiprid showed a synergistic effect with LMA10233. When the concentration of LMA10233 was decreased, we found that up to 80-90% of mortality was obtained due to the synergism between acetamiprid and LMA10233. No similar effect was observed with other insecticides. We conclude that such quinuclidine-borane complex compounds could increase the toxic effect of insecticides at low concentrations.


Assuntos
Boranos , Inseticidas , Praguicidas , Animais , Benzamidas , Neonicotinoides , Nitrocompostos , Quinuclidinas
6.
Pestic Biochem Physiol ; 151: 59-66, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30704714

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are the main target of neonicotinoid insecticides, which are widely used in crop protection against insect pests. Electrophysiological and molecular approaches have demonstrated the presence of several nAChR subtypes with different affinities for neonicotinoid insecticides. However, the precise mode of action of neonicotinoids on insect nAChRs remains to be elucidated. Radioligand binding studies with [3H]-α-bungarotoxin and [3H]-imidacloprid have proved instructive in understanding ligand binding interactions between insect nAChRs and neonicotinoid insecticides. The precise binding site interactions have been established using membranes from whole body and specific tissues. In this review, we discuss findings concerning the number of nAChR binding sites against neonicotinoid insecticides from radioligand binding studies on native tissues. We summarize the data available in the literature and compare the binding properties of the most commonly used neonicotinoid insecticides in several insect species. Finally, we demonstrate that neonicotinoid-nAChR binding sites are also linked to biological samples used and insect species.


Assuntos
Inseticidas/farmacologia , Neonicotinoides/química , Neonicotinoides/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Animais , Sítios de Ligação , Humanos , Ligação Proteica/efeitos dos fármacos
8.
Arch Insect Biochem Physiol ; 93(1): 40-54, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27357353

RESUMO

Nicotinic acetylcholine receptors are ligand-gated ion channels expressed in many insect structures, such as mushroom bodies, in which they play a central role. We have recently demonstrated using electrophysiological recordings that different native nicotinic receptors are expressed in cockroach mushroom bodies Kenyon cells. In the present study, we demonstrated that eight genes coding for cockroach nicotinic acetylcholine receptor subunits are expressed in the mushroom bodies. Quantitative real-time polymerase chain reaction (PCR) experiments demonstrated that ß1 subunit was the most expressed in the mushroom bodies. Moreover, antisense oligonucleotides performed against ß1 subunit revealed that inhibition of ß1 expression strongly decreases nicotine-induced currents amplitudes. Moreover, co-application with 0.5 µM α-bungarotoxin completely inhibited nicotine currents whereas 10 µM d-tubocurarine had a partial effect demonstrating that ß1-containing neuronal nicotinic acetylcholine receptor subtypes could be sensitive to the nicotinic acetylcholine receptor antagonist α-bungarotoxin.


Assuntos
Proteínas de Insetos/genética , Periplaneta/fisiologia , Receptores Nicotínicos/genética , Sequência de Aminoácidos , Animais , Bungarotoxinas/farmacologia , Clonagem Molecular , Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Masculino , Corpos Pedunculados/metabolismo , Periplaneta/efeitos dos fármacos , Periplaneta/genética , Periplaneta/crescimento & desenvolvimento , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Alinhamento de Sequência
9.
Bioorg Med Chem ; 23(7): 1540-50, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25716006

RESUMO

Structural features and selected physicochemical properties of four common pesticides: acetamiprid (neonicotinoid), chlorpyriphos (organophosphate insecticide), deltamethrin (pyrethroid) and fipronil (phenylpyrazole) have been investigated by Density Functional Theory quantum chemical calculations. The high flexible character of these insecticides is revealed by the numerous conformers obtained, located within a 20kJmol(-1) range in the gas phase. In line with this trend, a redistribution of the energetic minima is observed in water medium. Molecular electrostatic potential calculations provide a ranking of the potential interaction sites of the four insecticides. The theoretical studies reported in the present work are completed by comparative toxicological assays against three aphid strains. Thus, the same toxicity order for the two susceptible strains Myzus persicae 4106A and Acyrthosiphon pisum LSR1: acetamiprid>fipronil>deltamethrin>chlorpyriphos is revealed. In the resistant strain M. persicae 1300145, the toxicity order is modified: acetamiprid>fipronil>chlorpyriphos>deltamethrin. Interestingly, the strain 1300145 which is known to be resistant to neonicotinoids, is also less sensitive to deltamethrin, chlorpyriphos and fipronil.


Assuntos
Clorpirifos/química , Nitrilas/química , Praguicidas/química , Pirazóis/química , Piretrinas/química , Piridinas/química , Animais , Clorpirifos/toxicidade , Relação Dose-Resposta a Droga , Feminino , Insetos/efeitos dos fármacos , Neonicotinoides , Nitrilas/toxicidade , Praguicidas/toxicidade , Pirazóis/toxicidade , Piretrinas/toxicidade , Piridinas/toxicidade
10.
J Neurochem ; 130(4): 507-13, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24773052

RESUMO

Cellular responses to Ca(2+) require intermediary proteins such as calcium/calmodulin-dependent protein kinase II (CaMKII), which transduces the signal into downstream effects. We recently demonstrated that the cockroach genome encodes five different CaMKII isoforms, and only PaCaMKII-E isoform is specifically expressed in the dorsal unpaired median neurosecretory cells. In the present study, using antisense oligonucleotides, we demonstrated that PaCaMKII-E isoform inhibition reduced nicotine-induced currents through α-bungarotoxin-sensitive and -insensitive nicotinic acetylcholine receptor subtypes. Specifically, PaCaMKII-E isoform is sufficient to repress nicotinic current amplitudes as a result of its depression by antisense oligonucleotides. Similar results were found using the neonicotinoid insecticide clothianidin, which acted as a full agonist of dorsal unpaired median neuron nicotinic acetylcholine receptors. Clothianidin current amplitudes are strongly reduced under bath application of PaCaMKII-E antisense oligonucleotides but no significant results are found with α-bungarotoxin co-applied, demonstrating that CaMKII-E isoform affects nicotine currents through α-bungarotoxin-sensitive and -insensitive receptor subtypes whereas clothianidin currents are reduced via α-bungarotoxin-insensitive receptors. In addition, we found that intracellular calcium increase induced by nicotine and clothianidin were reduced by PaCaMKII-E antisense oligonucleotides, demonstrating that intracellular calcium increase induced by nicotine and clothianidin are affected by PaCaMKII-E inhibition. Cellular responses to Ca(2+) require intermediary proteins such as calcium/calmodulin-dependent protein kinase II (CaMKII). We recently demonstrated that the cockroach genome encodes five different CaMKII isoforms and only PaCaMKII-E isoform was specifically expressed in the dorsal unpaired median neurosecretory cells. Here we show that specific inhibition of PaCaMKII-E isoform is associated with a decrease in nicotine- and clothianidin-induced currents. In addition, analysis of calcium changes demonstrates that PaCaMKII-E inhibition induces a decrease in intracellular calcium concentration.


Assuntos
Canais de Cálcio/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Baratas/fisiologia , Guanidinas/farmacologia , Sistemas Neurossecretores/metabolismo , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Tiazóis/farmacologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Fenômenos Eletrofisiológicos , Gânglios dos Invertebrados/efeitos dos fármacos , Gânglios dos Invertebrados/metabolismo , Imuno-Histoquímica , Masculino , Neonicotinoides , Sistemas Neurossecretores/citologia , Sistemas Neurossecretores/efeitos dos fármacos , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase em Tempo Real , Receptores Nicotínicos/efeitos dos fármacos
11.
Bioorg Med Chem Lett ; 24(15): 3552-5, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24915877

RESUMO

Here, we describe the synthesis of two new fluorescent derivatives of thiamethoxam and compared their toxicity on aphid Acyrthosiphon pisum and their mode of action on insect nicotinic acetylcholine receptors expressed on the sixth abdominal ganglion. The compound 3 with two 2-chlorothiazole moieties was found to be more toxic using toxicological bioassays 24 h and 48 h after exposure while compound 4 appeared more active using cockroach ganglionic depolarization. Interestingly, thiamethoxam appeared more effective than component 3 and 4, respectively. Our results demonstrated that component 3 and 4 act as agonists of insect nicotinic acetylcholine receptors.


Assuntos
Afídeos/efeitos dos fármacos , Corantes Fluorescentes/farmacologia , Inseticidas/farmacologia , Nitrocompostos/farmacologia , Oxazinas/farmacologia , Receptores Nicotínicos/metabolismo , Tiazóis/farmacologia , Animais , Relação Dose-Resposta a Droga , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Inseticidas/síntese química , Inseticidas/química , Conformação Molecular , Neonicotinoides , Nitrocompostos/síntese química , Nitrocompostos/química , Oxazinas/síntese química , Oxazinas/química , Relação Estrutura-Atividade , Tiametoxam , Tiazóis/síntese química , Tiazóis/química
12.
Insects ; 15(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38249060

RESUMO

Toxicological studies have shown that the American cockroach Periplaneta americana (Linnaeus) is a classical model for studying the mode of action of commonly used insecticides. In a previous study, we demonstrated that thiamethoxam and clothianidin decreased locomotor activity in an open-field-like apparatus. Here, we tested the effect of the neonicotinoid acetamiprid when applied orally, topically, or injected into the haemolymph. We found that acetamiprid was also able to impair locomotor activity in the open-field-like apparatus. When treated with acetamiprid, a strong alteration in locomotor activity was observed 1 h, 24 h, and 48 h after haemolymph and topical applications. Oral application induced an impairment of locomotor activity at 24 h and 48 h. A comparison of the present data with our previously published results showed that neonicotinoids were more active when injected into the haemolymph compared to oral and topical applications. These findings increased our understanding of the effect of neonicotinoid insecticides on insect locomotor activity, and demonstrated that the cyano-substituted neonicotinoid, acetamiprid, was able to alter cockroach locomotor activity.

13.
14.
Arch Insect Biochem Physiol ; 83(3): 138-50, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23740573

RESUMO

Calcium/calmodulin-dependent protein kinase II (CaMKII) is a key kinase that transduces Ca²âº signals into downstream effects acting on a range of cellular processes in nervous system and muscular tissues. In insects, different CaMKII isoforms have been reported in Drosophila melanogaster, Apis florae, Bombus terrestris, and Bombus impatiens but little is known on the organization and tissue-specific expression of these isoforms with the exception of Drosophila. The present study reports the cloning of five CaMKII splice variants issued from a single gene and their tissue-specific expression in the cockroach Periplaneta americana. Each CaMKII isoform shared 82-90% identity with Drosophila CaMKII isoforms and accordingly were named PaCaMKII-A, PaCaMKII-B,PaCaMKII-C,PaCaMKII-D, and PaCaMKII-E. PaCaMKII-A and PaCaMKII-D isoforms are ubiquitously expressed in all tissues, but some such as PaCaMKII-B andPaCaMKII-C are preferentially expressed in the nerve cord and muscle. In addition, using single-cell reverse transcriptase-polymerase chain reaction (RT-PCR), we found a tissue-specific expression of PaCaMKII-E in the dorsal unpaired median neurons. Alternative splicing of PaCaMKII transcripts is likely a common mechanism in insects to control the pattern of isoform expression in the different tissues.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Periplaneta/enzimologia , Isoformas de Proteínas/genética , Processamento Alternativo/genética , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Clonagem Molecular , Biologia Computacional , Primers do DNA/genética , Regulação da Expressão Gênica/genética , Isoformas de Proteínas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Distribuição Tecidual
15.
Ticks Tick Borne Dis ; 14(1): 102079, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36417824

RESUMO

Ticks are vectors of many human and animal pathogens, and represent a major threat to public health. In recent years, an increase in tick-borne diseases has been observed, and new strategies are therefore needed in order to control tick numbers and reduce human tick bites. In the present study, we adapted the previous tick repellency bioassay based on the exploration behavior of the tick, using the ToxTrac software and video-tracking, to compare the repellent effect of two compounds on the tick Ixodes ricinus: N,N-diethyl-methyl-m-toluamide (DEET), and butenolide, flupyradifurone (FLU). We found that when applied alone, 10% DEET or FLU have no/or low repellency effect. But, the combination of both 10% DEET and FLU demonstrated a significant repellency effect against I. ricinus, similar to the repellency of 20% DEET. Using membrane microtransplantation, we evaluated the effect of DEET and FLU on native acetylcholine receptors expressed on the tick synganglion. We found that DEET has no effect on acetylcholine-evoked currents, but significantly reduced nicotine-induced current amplitudes. FLU induced an ionic current but was not able to reduce acetylcholine or nicotine evoked currents. The combination of both DEET and FLU strongly reduced nicotine-evoked currents. Finally, we demonstrated that our recording device for repellency, as well as the use of membrane microtransplantation, could be used as methods to study the mode of action of active compounds on ticks.


Assuntos
Ixodes , Humanos , Animais , Nicotina , Acetilcolina
16.
J Pharmacol Toxicol Methods ; 124: 107473, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37866797

RESUMO

The central nervous system of hard ticks (Ixodidae) consists of a concentrated merged nerve mass known as the synganglion. Although knowledge of tick neurobiology has dramatically improved over the last two decades, this is the first time that isolation and electrophysiological recordings have been carried out on tick neurons from the synganglion. Method: We developed a simple protocol for synganglion neuron isolation and used a whole-cell patch clamp to measure ionic currents induced by acetylcholine, nicotine and muscarine. Relatively large neurons (∼ 25 µm and âˆ¼ 35 µm) were isolated and 1 mM acetylcholine was used to induce strong inward currents of -0.38 ± 0.1 nA and - 1.04 ± 0.1 nA, respectively, with the corresponding cell capacitances being at around 142 pF and 188 pF. In addition, successive application of 1 mM acetylcholine through ∼25 µm and âˆ¼ 35 µm cells for increasing amounts of time resulted in a rapid reduction in current amplitudes. We also found that acetylcholine-evoked currents were associated with a reversible increase in intracellular calcium levels for each neuronal type. In contrast, 1 mM muscarine and nicotine induced a strong and non-reversible increase in intracellular calcium levels. This study serves as a proof of concept for the mechanical isolation of tick synganglion neurons followed by their electrophysiological recording. This approach will aid investigations into the pharmacological properties of tick neurons and provides the tools needed for the identification of drug-targeted sites and effective tick control measures.


Assuntos
Ixodes , Animais , Ixodes/metabolismo , Nicotina/farmacologia , Nicotina/metabolismo , Acetilcolina/farmacologia , Acetilcolina/metabolismo , Cálcio/metabolismo , Muscarina/metabolismo , Muscarina/farmacologia , Neurônios
17.
J Insect Physiol ; 139: 104385, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35315336

RESUMO

Dorsal unpaired median (DUM) neurons, are a class of insect neurosecretory cells, which are involved in the control of several functions, such as excretion and reproduction, or the release of neurohormones. Previous studies demonstrated that they express different nicotinic acetylcholine receptor subtypes, in particular α-bungarotoxin-insensitive receptors, with nAChR1 and nAChR2 subtypes. Here, we demonstrated that pulse application of 1 mM nicotine (300 ms pulse duration) induced inward currents which were reduced under bath application of 15 µM calmidazolium, a calmodulin inhibitor. Bath application of 0.5 µM α-bungarotoxin had no effect on calmidazolium action, suggesting that it could have an indirect effect through α-bungarotoxin-insensitive receptors. Indeed, nicotine-evoked currents were reduced by 10 µM d-tubocurarine, and completely blocked by 5 µM mecamylamine, which affected nAChR1 and nAChR2 subtypes, respectively. Our results demonstrated that nAChR2 subtypes are involved in the indirect effect of calmidazolium. Moreover, we found that this calmidazolium effect was associated to a strong reduction in intracellular calcium levels after pulse application of 1 mM nicotine. Thus, compared to previous studies on mammalian cells, calmidazolium did not cause an increase in intracellular calcium levels in DUM neurons, suggesting that different calcium mechanisms are involved in the calmidazolium effect.


Assuntos
Baratas , Nicotina , Animais , Bungarotoxinas/farmacologia , Cálcio , Imidazóis , Insetos , Mamíferos , Nicotina/farmacologia
18.
PLoS One ; 17(8): e0272514, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35921304

RESUMO

Sulfoxaflor is a new insecticide which acts on the nicotinic acetylcholine receptor (nAChRs) in a similar way to neonicotinoids. However, sufloxaflor (SFX) is thought to act in a different manner and is thus proposed as an alternative in crop protection. The goal of this study is to evaluate the toxicity of SFX and its sublethal effect on the honeybee Apis mellifera after acute exposure. In toxicological assay studies, the LD50 value and sublethal dose (corresponding to the NOEL: no observed effect level) were 96 and 15 ng/bee, respectively. Using the proboscis extension response paradigm, we found that an SFX dose of 15 ng/bee significantly impairs learning and memory retrieval when applied 12 h before conditioning or 24 h after olfactory conditioning. SFX had no effect on honeybee olfactory performance when exposure happened after the conditioning. Relative quantitative PCR experiments performed on the six nicotinic acetylcholine receptor subunits demonstrated that they are differently expressed in the honeybee brain after SFX exposure, whether before or after conditioning. We found that intoxicated bees with learning defects showed a strong expression of the Amelß1 subunit. They displayed overexpression of Amelα9 and Amelß2, and down-regulation of Amelα1, Amelα3 and Amelα7 subunits. These results demonstrated for the first time that a sublethal dose of SFX could affect honeybee learning and memory performance and modulate the expression of specific nAChR subunits in the brain.


Assuntos
Inseticidas , Receptores Nicotínicos , Animais , Abelhas/genética , Inseticidas/toxicidade , Aprendizagem , Neonicotinoides/toxicidade , Piridinas , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Compostos de Enxofre/farmacologia
19.
Neurotoxicology ; 78: 143-151, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32169464

RESUMO

We previously demonstrated that the cockroach α-bungarotoxin-sensitive nicotinic acetylcholine receptors, nAChR1 and nAChR2 subtypes, are differently sensitive to intracellular calcium pathways. Here, using whole cell patch-clamp recordings, we studied the effects of the diacylglycerol (DAG) analogue 1,2-dioctanoyl-sn-glycerol (DiC8) on nicotine- and clothianidin-evoked currents under an α-bungarotoxin treatment. Our results demonstrated that DiC8 reduced nicotine and clothianidin evoked currents. 10 µM DiC8 suppressed the increase in nicotine-induced currents which was brought about by application of 5 mM caffeine or 9 mM Ca2+, whereas DiC8 did not affect the decrease in nicotine-induced currents induced by BAPTA. Similarly, bath application of caffeine or 9 mM Ca2+ did not change the clothianidin effects, and the amplitude of clothianidin-induced currents was not affected. However, co-application of both 10 µM DiC8 with 9 mM Ca2+, caffeine or BAPTA reduced clothianidin current amplitudes. We conclude that nicotine and clothianidin differently modulate nAChR1 and nAChR2 subtypes under DiC8 treatment, and that nicotine activates nAChR1, whereas clothianidin activates both nAChR1 and nAChR2 subtypes.


Assuntos
Bungarotoxinas/administração & dosagem , Diglicerídeos/administração & dosagem , Guanidinas/administração & dosagem , Potenciais da Membrana/efeitos dos fármacos , Neonicotinoides/administração & dosagem , Neurônios/efeitos dos fármacos , Nicotina/administração & dosagem , Receptores Nicotínicos/administração & dosagem , Receptores Nicotínicos/fisiologia , Tiazóis/administração & dosagem , Animais , Sinalização do Cálcio/efeitos dos fármacos , Baratas , Masculino , Neurônios/fisiologia , Agonistas Nicotínicos/administração & dosagem
20.
Artigo em Inglês | MEDLINE | ID: mdl-32384754

RESUMO

Neonicotinoid insecticides are used worldwide and have been demonstrated as toxic to beneficial insects such as honeybees. Their effectiveness is predominantly attributed to their high affinity for insect neuronal nicotinic acetylcholine receptors (nAChRs). Mammalian neuronal nAChRs are of major importance because cholinergic synaptic transmission plays a key role in rapid neurotransmission, learning and memory processes, and neurodegenerative diseases. Because of the low agonist effects of neonicotinoid insecticides on mammalian neuronal nAChRs, it has been suggested that they are relatively safe for mammals, including humans. However, several lines of evidence have demonstrated that neonicotinoid insecticides can modulate cholinergic functions through neuronal nAChRs. Major studies on the influence of neonicotinoid insecticides on cholinergic functions have been conducted using nicotine low-affinity homomeric α7 and high-affinity heteromeric α4ß2 receptors, as they are the most abundant in the nervous system. It has been found that the neonicotinoids thiamethoxam and clothianidin can activate the release of dopamine in rat striatum. In some contexts, such as neurodegenerative diseases, they can disturb the neuronal distribution or induce oxidative stress, leading to neurotoxicity. This review highlights recent studies on the mode of action of neonicotinoid insecticides on mammalian neuronal nAChRs and cholinergic functions.


Assuntos
Inseticidas/farmacologia , Neonicotinoides/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Animais , Colinérgicos , Humanos , Mamíferos , Ratos , Receptores Nicotínicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA