Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(18): 181101, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36374675

RESUMO

Fully general-relativistic binary-neutron-star (BNS) merger simulations with quark-hadron crossover (QHC) equations of state (EOS) are studied for the first time. In contrast to EOS with purely hadronic matter or with a first-order quark-hadron phase transition (1PT), in the transition region QHC EOS show a peak in sound speed and thus a stiffening. We study the effects of such stiffening in the merger and postmerger gravitational (GW) signals. Through simulations in the binary-mass range 2.5

2.
Phys Rev Lett ; 120(3): 031102, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29400541

RESUMO

We show how gravitational-wave observations with advanced detectors of tens to several tens of neutron-star binaries can measure the neutron-star radius with an accuracy of several to a few percent, for mass and spatial distributions that are realistic, and with none of the sources located within 100 Mpc. We achieve such an accuracy by combining measurements of the total mass from the inspiral phase with those of the compactness from the postmerger oscillation frequencies. For estimating the measurement errors of these frequencies, we utilize analytical fits to postmerger numerical relativity waveforms in the time domain, obtained here for the first time, for four nuclear-physics equations of state and a couple of values for the mass. We further exploit quasiuniversal relations to derive errors in compactness from those frequencies. Measuring the average radius to well within 10% is possible for a sample of 100 binaries distributed uniformly in volume between 100 and 300 Mpc, so long as the equation of state is not too soft or the binaries are not too heavy. We also give error estimates for the Einstein Telescope.

3.
Phys Rev Lett ; 113(9): 091104, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25215972

RESUMO

Determining the equation of state of matter at nuclear density and hence the structure of neutron stars has been a riddle for decades. We show how the imminent detection of gravitational waves from merging neutron star binaries can be used to solve this riddle. Using a large number of accurate numerical-relativity simulations of binaries with nuclear equations of state, we find that the postmerger emission is characterized by two distinct and robust spectral features. While the high-frequency peak has already been associated with the oscillations of the hypermassive neutron star produced by the merger and depends on the equation of state, a new correlation emerges between the low-frequency peak, related to the merger process, and the total compactness of the stars in the binary. More importantly, such a correlation is essentially universal, thus providing a powerful tool to set tight constraints on the equation of state. If the mass of the binary is known from the inspiral signal, the combined use of the two frequency peaks sets four simultaneous constraints to be satisfied. Ideally, even a single detection would be sufficient to select one equation of state over the others. We test our approach with simulated data and verify it works well for all the equations of state considered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA