Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Circulation ; 149(10): 774-787, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38018436

RESUMO

BACKGROUND: Cholesterol efflux capacity (CEC) predicts cardiovascular disease independently of high-density lipoprotein (HDL) cholesterol levels. Isolated small HDL particles are potent promoters of macrophage CEC by the ABCA1 (ATP-binding cassette transporter A1) pathway, but the underlying mechanisms are unclear. METHODS: We used model system studies of reconstituted HDL and plasma from control and lecithin-cholesterol acyltransferase (LCAT)-deficient subjects to investigate the relationships among the sizes of HDL particles, the structure of APOA1 (apolipoprotein A1) in the different particles, and the CECs of plasma and isolated HDLs. RESULTS: We quantified macrophage and ABCA1 CEC of 4 distinct sizes of reconstituted HDL. CEC increased as particle size decreased. Tandem mass spectrometric analysis of chemically cross-linked peptides and molecular dynamics simulations of APOA1, the major protein of HDL, indicated that the mobility of C-terminus of that protein was markedly higher and flipped off the surface in the smallest particles. To explore the physiological relevance of the model system studies, we isolated HDL from LCAT-deficient subjects, whose small HDLs (like reconstituted HDLs) are discoidal and composed of APOA1, cholesterol, and phospholipid. Despite their very low plasma levels of HDL particles, these subjects had normal CEC. In both the LCAT-deficient subjects and control subjects, the CEC of isolated extra-small HDL (a mixture of extra-small and small HDL by calibrated ion mobility analysis) was 3- to 5-fold greater than that of the larger sizes of isolated HDL. Incubating LCAT-deficient plasma and control plasma with human LCAT converted extra-small and small HDL particles into larger particles, and it markedly inhibited CEC. CONCLUSIONS: We present a mechanism for the enhanced CEC of small HDLs. In smaller particles, the C-termini of the 2 antiparallel molecules of APOA1 are "flipped" off the lipid surface of HDL. This extended conformation allows them to engage with ABCA1. In contrast, the C-termini of larger HDLs are unable to interact productively with ABCA1 because they form a helical bundle that strongly adheres to the lipid on the particle. Enhanced CEC, as seen with the smaller particles, predicts decreased cardiovascular disease risk. Thus, extra-small and small HDLs may be key mediators and indicators of the cardioprotective effects of HDL.


Assuntos
Apolipoproteína A-I , Doenças Cardiovasculares , Humanos , Apolipoproteína A-I/metabolismo , Doenças Cardiovasculares/metabolismo , Lipoproteínas HDL/metabolismo , Colesterol , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Macrófagos/metabolismo , HDL-Colesterol
2.
J Lipid Res ; 63(8): 100241, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35714730

RESUMO

Obesity is associated with inflammation, insulin resistance, and type 2 diabetes, which are major risk factors for CVD. One dietary component of ruminant animal foods, 10,12-conjugated linoleic acid (10,12 CLA), has been shown to promote weight loss in humans. Previous work has shown that 10,12 CLA is atheroprotective in mice by a mechanism that may be distinct from its weight loss effects, but this exact mechanism is unclear. To investigate this, we evaluated HDL composition and function in obese LDL receptor (Ldlr-/-) mice that were losing weight because of 10,12 CLA supplementation or caloric restriction (CR; weight-matched control group) and in an obese control group consuming a high-fat high-sucrose diet. We show that 10,12 CLA-HDL exerted a stronger anti-inflammatory effect than CR- or high-fat high-sucrose-HDL in cultured adipocytes. Furthermore, the 10,12 CLA-HDL particle (HDL-P) concentration was higher, attributed to more medium- and large-sized HDL-Ps. Passive cholesterol efflux capacity of 10,12 CLA-HDL was elevated, as was expression of HDL receptor scavenger receptor class B type 1 in the aortic arch. Murine macrophages treated with 10,12 CLA in vitro exhibited increased expression of cholesterol transporters Abca1 and Abcg1, suggesting increased cholesterol efflux potential of these cells. Finally, proteomics analysis revealed elevated Apoa1 content in 10,12 CLA-HDL-Ps, consistent with a higher particle concentration, and particles were also enriched with alpha-1-antitrypsin, an emerging anti-inflammatory and antiatherosclerotic HDL-associated protein. We conclude that 10,12 CLA may therefore exert its atheroprotective effects by increasing HDL-P concentration, HDL anti-inflammatory potential, and promoting beneficial effects on cholesterol efflux.


Assuntos
Diabetes Mellitus Tipo 2 , Ácidos Linoleicos Conjugados , Animais , Colesterol , Dieta Hiperlipídica , Suplementos Nutricionais , Humanos , Camundongos , Obesidade , Sacarose , Redução de Peso
3.
J Lipid Res ; 63(3): 100168, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051413

RESUMO

Because of its critical role in HDL formation, significant efforts have been devoted to studying apolipoprotein A-I (APOA1) structural transitions in response to lipid binding. To assess the requirements for the conformational freedom of its termini during HDL particle formation, we generated three dimeric APOA1 molecules with their termini covalently joined in different combinations. The dimeric (d)-APOA1C-N mutant coupled the C-terminus of one APOA1 molecule to the N-terminus of a second with a short alanine linker, whereas the d-APOA1C-C and d-APOA1N-N mutants coupled the C-termini and the N-termini of two APOA1 molecules, respectively, using introduced cysteine residues to form disulfide linkages. We then tested the ability of these constructs to generate reconstituted HDL by detergent-assisted and spontaneous phospholipid microsolubilization methods. Using cholate dialysis, we demonstrate WT and all APOA1 mutants generated reconstituted HDL particles of similar sizes, morphologies, compositions, and abilities to activate lecithin:cholesterol acyltransferase. Unlike WT, however, the mutants were incapable of spontaneously solubilizing short chain phospholipids into discoidal particles. We found lipid-free d-APOA1C-N and d-APOA1N-N retained most of WT APOA1's ability to promote cholesterol efflux via the ATP binding cassette transporter A1, whereas d-APOA1C-C exhibited impaired cholesterol efflux. Our data support the double belt model for a lipid-bound APOA1 structure in nascent HDL particles and refute other postulated arrangements like the "double super helix." Furthermore, we conclude the conformational freedom of both the N- and C-termini of APOA1 is important in spontaneous microsolubilization of bulk phospholipid but is not critical for ABCA1-mediated cholesterol efflux.


Assuntos
Apolipoproteína A-I , Colesterol , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Apolipoproteína A-I/metabolismo , Transporte Biológico , Colesterol/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Fosfolipídeos/metabolismo
4.
Circ Res ; 127(9): 1198-1210, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32819213

RESUMO

RATIONALE: HDL (high-density lipoprotein) may be cardioprotective because it accepts cholesterol from macrophages via the cholesterol transport proteins ABCA1 (ATP-binding cassette transporter A1) and ABCG1 (ATP-binding cassette transporter G1). The ABCA1-specific cellular cholesterol efflux capacity (ABCA1 CEC) of HDL strongly and negatively associates with cardiovascular disease risk, but how diabetes mellitus impacts that step is unclear. OBJECTIVE: To test the hypothesis that HDL's cholesterol efflux capacity is impaired in subjects with type 2 diabetes mellitus. METHODS AND RESULTS: We performed a case-control study with 19 subjects with type 2 diabetes mellitus and 20 control subjects. Three sizes of HDL particles, small HDL, medium HDL, and large HDL, were isolated by high-resolution size exclusion chromatography from study subjects. Then we assessed the ABCA1 CEC of equimolar concentrations of particles. Small HDL accounted for almost all of ABCA1 CEC activity of HDL. ABCA1 CEC-but not ABCG1 CEC-of small HDL was lower in the subjects with type 2 diabetes mellitus than the control subjects. Isotope dilution tandem mass spectrometry demonstrated that the concentration of SERPINA1 (serpin family A member 1) in small HDL was also lower in subjects with diabetes mellitus. Enriching small HDL with SERPINA1 enhanced ABCA1 CEC. Structural analysis of SERPINA1 identified 3 amphipathic α-helices clustered in the N-terminal domain of the protein; biochemical analyses demonstrated that SERPINA1 binds phospholipid vesicles. CONCLUSIONS: The ABCA1 CEC of small HDL is selectively impaired in type 2 diabetes mellitus, likely because of lower levels of SERPINA1. SERPINA1 contains a cluster of amphipathic α-helices that enable apolipoproteins to bind phospholipid and promote ABCA1 activity. Thus, impaired ABCA1 activity of small HDL particles deficient in SERPINA1 could increase cardiovascular disease risk in subjects with diabetes mellitus.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Doenças Cardiovasculares/etiologia , Colesterol/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Lipoproteínas HDL/metabolismo , alfa 1-Antitripsina/metabolismo , Apolipoproteína C-II/análise , Apolipoproteínas/metabolismo , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/sangue , Feminino , Humanos , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Fosfolipídeos/metabolismo , Estrutura Terciária de Proteína , Risco , Triglicerídeos/análise , alfa 1-Antitripsina/química
6.
J Neurosci ; 39(48): 9611-9622, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31641056

RESUMO

The APOE ε4 allele is the strongest genetic risk factor for late-onset Alzheimer's disease (AD). ApoE protein aggregation plays a central role in AD pathology, including the accumulation of ß-amyloid (Aß). Lipid-poor ApoE4 protein is prone to aggregate and lipidating ApoE4 protects it from aggregation. The mechanisms regulating ApoE4 aggregation in vivo are surprisingly not known. ApoE lipidation is controlled by the activity of the ATP binding cassette A1 (ABCA1). ABCA1 recycling and degradation is regulated by ADP-ribosylation factor 6 (ARF6). We found that ApoE4 promoted greater expression of ARF6 compared with ApoE3, trapping ABCA1 in late-endosomes and impairing its recycling to the cell membrane. This was associated with lower ABCA1-mediated cholesterol efflux activity, a greater percentage of lipid-free ApoE particles, and lower Aß degradation capacity. Human CSF from APOE ε4/ε4 carriers showed a lower ability to induce ABCA1-mediated cholesterol efflux activity and greater percentage of aggregated ApoE protein compared with CSF from APOE ε3/ε3 carriers. Enhancing ABCA1 activity rescued impaired Aß degradation in ApoE4-treated cells and reduced both ApoE and ABCA1 aggregation in the hippocampus of male ApoE4-targeted replacement mice. Together, our data demonstrate that aggregated and lipid-poor ApoE4 increases ABCA1 aggregation and decreases ABCA1 cell membrane recycling. Enhancing ABCA1 activity to reduce ApoE and ABCA1 aggregation is a potential therapeutic strategy for the prevention of ApoE4 aggregation-driven pathology.SIGNIFICANCE STATEMENT ApoE protein plays a key role in the formation of amyloid plaques, a hallmark of Alzheimer's disease (AD). ApoE4 is more aggregated and hypolipidated compared with ApoE3, but whether enhancing ApoE lipidation in vivo can reverse ApoE aggregation is not known. ApoE lipidation is controlled by the activity of the ATP binding cassette A1 (ABCA1). In this study, we demonstrated that the greater propensity of lipid-poor ApoE4 to aggregate decreased ABCA1 membrane recycling and its ability to lipidate ApoE. Importantly, enhancing ABCA1 activity to lipidate ApoE reduced ApoE and ABCA1 aggregation. This work provides critical insights into the interactions among ABCA1, ApoE lipidation and aggregation, and underscores the promise of stabilizing ABCA1 activity to prevent ApoE-driven aggregation pathology.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Apolipoproteína E4/metabolismo , Astrócitos/metabolismo , Membrana Celular/metabolismo , Fator 6 de Ribosilação do ADP , Idoso , Idoso de 80 Anos ou mais , Animais , Apolipoproteína E4/farmacologia , Astrócitos/efeitos dos fármacos , Linhagem Celular Transformada , Membrana Celular/efeitos dos fármacos , Células Cultivadas , Cricetinae , Feminino , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia
7.
J Lipid Res ; 60(3): 594-608, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30622162

RESUMO

HDLs are nanoparticles with more than 80 associated proteins, phospholipids, cholesterol, and cholesteryl esters. The potential inverse relation of HDL to coronary artery disease (CAD) and the effects of HDL on myriad other inflammatory conditions warrant a better understanding of the genetic basis of the HDL proteome. We conducted a comprehensive genetic analysis of the regulation of the proteome of HDL isolated from a panel of 100 diverse inbred strains of mice (the hybrid mouse diversity panel) and examined protein composition and efflux capacity to identify novel factors that affect the HDL proteome. Genetic analysis revealed widely varied HDL protein levels across the strains. Some of this variation was explained by local cis-acting regulation, termed cis-protein quantitative trait loci (QTLs). Variations in apoA-II and apoC-3 affected the abundance of multiple HDL proteins, indicating a coordinated regulation. We identified modules of covarying proteins and defined a protein-protein interaction network that describes the protein composition of the naturally occurring subspecies of HDL in mice. Sterol efflux capacity varied up to 3-fold across the strains, and HDL proteins displayed distinct correlation patterns with macrophage and ABCA1-specific cholesterol efflux capacity and cholesterol exchange, suggesting that subspecies of HDL participate in discrete functions. The baseline and stimulated sterol efflux capacity phenotypes were associated with distinct QTLs with smaller effect size, suggesting a multigenetic regulation. Our results highlight the complexity of HDL particles by revealing the high degree of heterogeneity and intercorrelation, some of which is associated with functional variation, and support the concept that HDL-cholesterol alone is not an accurate measure of HDL's properties, such as protection against CAD.


Assuntos
HDL-Colesterol/metabolismo , Proteoma/genética , Animais , Linhagem Celular , HDL-Colesterol/sangue , Camundongos , Locos de Características Quantitativas/genética
8.
Circ Res ; 119(1): 83-90, 2016 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-27114438

RESUMO

RATIONALE: Coronary endothelial dysfunction (ED)-an early marker of atherosclerosis-increases the risk of cardiovascular events. OBJECTIVE: We tested the hypothesis that cholesterol efflux capacity and high-density lipoprotein (HDL) particle concentration predict coronary ED better than HDL-cholesterol (HDL-C). METHODS AND RESULTS: We studied 80 subjects with nonobstructive (<30% stenosis) coronary artery disease. ED was defined as <50% change in coronary blood flow in response to intracoronary infusions of acetylcholine during diagnostic coronary angiography. Cholesterol efflux capacity and HDL particle concentration (HDL-PIMA) were assessed with validated assays. Cholesterol efflux capacity and HDL-PIMA were both strong, inverse predictors of ED (P<0.001 and 0.005, respectively). In contrast, HDL-C and other traditional lipid risk factors did not differ significantly between control and ED subjects. Large HDL particles were markedly decreased in ED subjects (33%; P=0.005). After correction for HDL-C, both efflux capacity and HDL-PIMA remained significant predictors of ED status. HDL-PIMA explained cholesterol efflux capacity more effectively than HDL-C (r=0.54 and 0.36, respectively). The efflux capacities of isolated HDL and serum HDL correlated strongly (r=0.49). CONCLUSIONS: Cholesterol efflux capacity and HDL-PIMA are reduced in subjects with coronary ED, independently of HDL-C. Alterations in HDL-PIMA and HDL itself account for a much larger fraction of the variation in cholesterol efflux capacity than does HDL-C. A selective decrease in large HDL particles may contribute to impaired cholesterol efflux capacity in ED subjects. These observations support a role for HDL size, concentration, and function as markers-and perhaps mediators-of coronary atherosclerosis in humans.


Assuntos
HDL-Colesterol/metabolismo , Doença da Artéria Coronariana/sangue , Endotélio Vascular/metabolismo , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , HDL-Colesterol/sangue , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Endotélio Vascular/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
10.
Biochim Biophys Acta ; 1861(12 Pt A): 1968-1979, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27671775

RESUMO

ATP-binding cassette transporter A1 (ABCA1) mediates formation of disc-shaped high-density lipoprotein (HDL) from cell lipid and lipid-free apolipoprotein A-I (apo A-I). Discoidal HDL particles are heterogeneous in physicochemical characteristics for reasons that are understood incompletely. Discoidal lipoprotein particles similar in characteristics and heterogeneity to cell-formed discoidal HDL can be reconstituted from purified lipids and apo A-I by cell-free, physicochemical methods. The heterogeneity of reconstituted HDL (rHDL) is sensitive to the lipid composition of the starting lipid/apo A-I mixture. To determine whether the heterogeneity of cell-formed HDL is similarly sensitive to changes in cell lipids, we investigated four compounds that have well-established effects on cell lipid metabolism and ABCA1-mediated cell cholesterol efflux. 2-Bromopalmitate, D609, monensin and U18666A decreased formation of the larger-sized, but dramatically increased formation of the smaller-sized HDL. 2-Bromopalmitate did not appear to affect ABCA1 activity, subcellular localization or oligomerization, but induced dissolution of the cholesterol-phospholipid complexes in the plasma membrane. Arachidonic and linoleic acids shifted HDL formation to the smaller-sized species. Tangier disease mutations and inhibitors of ABCA1 activity wheat germ agglutinin and AG 490 reduced formation of both larger-sized and smaller-sized HDL. The effect of probucol was similar to the effect of 2-bromopalmitate. Taking rHDL formation as a paradigm, we propose that ABCA1 mutations and activity inhibitors reduce the amount of cell lipid available for HDL formation, and the compounds in the 2-bromopalmitate group and the polyunsaturated fatty acids change cell lipid composition from one that favors formation of the larger-sized HDL particles to one that favors formation of the smaller-sized species.


Assuntos
Androstenos/farmacologia , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipoproteínas HDL/metabolismo , Monensin/farmacologia , Palmitatos/farmacologia , Probucol/farmacologia , Tionas/farmacologia , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Apolipoproteína A-I/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Colesterol/metabolismo , Ácidos Graxos Insaturados/metabolismo , Humanos , Macrófagos/metabolismo , Camundongos , Norbornanos , Tamanho da Partícula , Fosfolipídeos/metabolismo , Células RAW 264.7 , Tiocarbamatos
11.
J Lipid Res ; 57(5): 848-57, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26989082

RESUMO

ABCA1 exports excess cholesterol from cells to apoA-I and is essential for HDL synthesis. Genetic studies have shown that ABCA1 protects against cardiovascular disease. We have previously shown that the interaction of apoA-I with ABCA1 activates signaling molecule Janus kinase 2 (JAK2), which optimizes the cholesterol efflux activity of ABCA1. ABCA1-mediated activation of JAK2 also activates signal transducer and activator of transcription 3 (STAT3), which significantly attenuates proinflammatory cytokine expression in macrophages. To determine the mechanisms of the anti-inflammatory effects of apoA-I/ABCA1 interaction, we identified two special ABCA1 mutants, one with normal STAT3-activating capacity but lacking cholesterol efflux ability and the other with normal cholesterol efflux ability but lacking STAT3-activating capacity. We showed that activation of STAT3 by the interaction of apoA-I/ABCA1 without cholesterol efflux could significantly decrease proinflammatory cytokine expression in macrophages. Mechanistic studies showed that the anti-inflammatory effect of the apoA-I/ABCA1/STAT3 pathway is suppressor of cytokine signaling 3 dependent. Moreover, we showed that apoA-I/ABCA1-mediated cholesterol efflux without STAT3 activation can also reduce proinflammatory cytokine expression in macrophages. These findings suggest that the interaction of apoA-I/ABCA1 activates cholesterol efflux and STAT3 branch pathways to synergistically suppress inflammation in macrophages.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/genética , Apolipoproteína A-I/metabolismo , Colesterol/metabolismo , Macrófagos Peritoneais/metabolismo , Fator de Transcrição STAT3/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Linhagem Celular , Cricetinae , Citocinas/genética , Citocinas/metabolismo , Expressão Gênica , Macrófagos Peritoneais/imunologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
12.
J Lipid Res ; 57(1): 100-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26531812

RESUMO

Low-grade chronic inflammation plays an important role in the pathogenesis of obesity-induced insulin resistance. ABCA1 is essential for reverse cholesterol transport and HDL synthesis, and protects against macrophage inflammation. In the present study, the effects of ABCA1 deficiency in hematopoietic cells on diet-induced inflammation and insulin resistance were tested in vivo using bone marrow transplanted (BMT)-WT and BMT-ABCA1(-/-) mice. When challenged with a high-fat high-carbohydrate diabetogenic diet with added cholesterol (HFHSC), BMT-ABCA1(-/-) mice displayed enhanced insulin resistance and impaired glucose tolerance as compared with BMT-WT mice. The worsened insulin resistance and impaired glucose tolerance in BMT-ABCA1(-/-) mice were accompanied by increased macrophage accumulation and inflammation in adipose tissue and liver. Moreover, BMT-ABCA1(-/-) mice had significantly higher hematopoietic stem cell proliferation, myeloid cell expansion, and monocytosis when challenged with the HFHSC diet. In vitro studies indicated that macrophages from ABCA1(-/-) mice showed significantly increased inflammatory responses induced by saturated fatty acids. Taken together, these studies point to an important role for hematopoietic ABCA1 in modulating a feed-forward mechanism in obesity such that inflamed tissue macrophages stimulate the production of more monocytes, leading to an exacerbation of inflammation and associated disease processes.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/deficiência , Resistência à Insulina/fisiologia , Transportador 1 de Cassete de Ligação de ATP/sangue , Transportador 1 de Cassete de Ligação de ATP/genética , Tecido Adiposo/metabolismo , Animais , Colesterol/metabolismo , Colesterol/farmacologia , Dieta Hiperlipídica , Intolerância à Glucose/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Fígado/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , Monócitos/metabolismo , Monócitos/patologia , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Transtornos Mieloproliferativos/patologia , Obesidade/patologia , Receptores de LDL/metabolismo
13.
Circ Res ; 114(11): 1733-42, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24647144

RESUMO

RATIONALE: The efflux capacity of high-density lipoprotein (HDL) with cultured macrophages associates strongly and negatively with coronary artery disease status, indicating that impaired sterol efflux capacity might be a marker-and perhaps mediator-of atherosclerotic burden. However, the mechanisms that contribute to impaired sterol efflux capacity remain poorly understood. OBJECTIVE: Our aim was to determine the relationship between myeloperoxidase-mediated oxidative damage to apolipoprotein A-I, the major HDL protein, and the ability of HDL to remove cellular cholesterol by the ATP-binding cassette transporter A1 (ABCA1) pathway. METHODS AND RESULTS: We quantified both site-specific oxidation of apolipoprotein A-I and HDL's ABCA1 cholesterol efflux capacity in control subjects and subjects with stable coronary artery disease or acute coronary syndrome. Subjects with coronary artery disease and acute coronary syndrome had higher levels of chlorinated tyrosine 192 and oxidized methionine 148 compared with control subjects. In contrast, plasma levels of myeloperoxidase did not differ between the groups. HDL from the subjects with coronary artery disease and acute coronary syndrome was less able to accept cholesterol from cells expressing ABCA1 compared with HDL from control subjects. Levels of chlorinated tyrosine and oxidized methionine associated inversely with ABCA1 efflux capacity and positively with atherosclerotic disease status. These differences remained significant after adjusting for HDL-cholesterol levels. CONCLUSIONS: Our observations indicate that myeloperoxidase may contribute to the generation of dysfunctional HDL with impaired ABCA1 efflux capacity in humans with atherosclerosis. Quantification of chlorotyrosine and oxidized methionine in circulating HDL might be useful indicators of the risk of cardiovascular disease that are independent of HDL-cholesterol.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Aterosclerose/metabolismo , Colesterol/metabolismo , Lipoproteínas HDL/metabolismo , Peroxidase/metabolismo , Transdução de Sinais/fisiologia , Síndrome Coronariana Aguda/metabolismo , Síndrome Coronariana Aguda/fisiopatologia , Idoso , Apolipoproteína A-I/metabolismo , Aterosclerose/fisiopatologia , Biomarcadores/metabolismo , Proteína C-Reativa/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/fisiopatologia , Feminino , Humanos , Masculino , Metionina/metabolismo , Pessoa de Meia-Idade , Oxirredução
14.
J Lipid Res ; 56(12): 2337-47, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26489644

RESUMO

In addition to triacylglycerols, adipocytes contain a large reserve of unesterified cholesterol. During adipocyte lipolysis and cell death seen during severe obesity and weight loss, free fatty acids and cholesterol become available for uptake and processing by adipose tissue macrophages (ATMs). We hypothesize that ATMs become cholesterol enriched and participate in cholesterol clearance from adipose tissue. We previously showed that ABCG1 is robustly upregulated in ATMs taken from obese mice and further enhanced by caloric restriction. Here, we found that ATMs taken from obese and calorie-restricted mice derived from transplantation of WT or Abcg1-deficient bone marrow are cholesterol enriched. ABCG1 levels regulate the ratio of classically activated (M1) to alternatively activated (M2) ATMs and their cellular cholesterol content. Using WT and Abcg1(-/-) cultured macrophages, we found that Abcg1 is most highly expressed by M2 macrophages and that ABCG1 deficiency is sufficient to retard macrophage chemotaxis. However, changes in myeloid expression of Abcg1 did not protect mice from obesity or impaired glucose homeostasis. Overall, ABCG1 modulates ATM cholesterol content in obesity and weight loss regimes leading to an alteration in M1 to M2 ratio that we suggest is due to the extent of macrophage egress from adipose tissue.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Restrição Calórica , Colesterol/metabolismo , Lipoproteínas/metabolismo , Macrófagos/metabolismo , Obesidade/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Lipoproteínas/genética , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética
15.
J Lipid Res ; 56(8): 1519-30, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25995210

RESUMO

Recent studies demonstrate that HDL's ability to promote cholesterol efflux from macrophages associates strongly with cardioprotection in humans independently of HDL-cholesterol (HDL-C) and apoA-I, HDL's major protein. However, the mechanisms that impair cholesterol efflux capacity during vascular disease are unclear. Inflammation, a well-established risk factor for cardiovascular disease, has been shown to impair HDL's cholesterol efflux capacity. We therefore tested the hypothesis that HDL's impaired efflux capacity is mediated by specific changes of its protein cargo. Humans with acute inflammation induced by low-level endotoxin had unchanged HDL-C levels, but their HDL-C efflux capacity was significantly impaired. Proteomic analyses demonstrated that HDL's cholesterol efflux capacity correlated inversely with HDL content of serum amyloid A (SAA)1 and SAA2. In mice, acute inflammation caused a marked impairment of HDL-C efflux capacity that correlated with a large increase in HDL SAA. In striking contrast, the efflux capacity of mouse inflammatory HDL was preserved with genetic ablation of SAA1 and SAA2. Our observations indicate that the inflammatory impairment of HDL-C efflux capacity is due in part to SAA-mediated remodeling of HDL's protein cargo.


Assuntos
HDL-Colesterol/metabolismo , Proteoma/metabolismo , Adulto , Animais , HDL-Colesterol/sangue , HDL-Colesterol/química , Citoproteção , Endotoxinas/toxicidade , Humanos , Inflamação/sangue , Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Miocárdio/citologia , Miocárdio/metabolismo , Proteína Amiloide A Sérica/deficiência , Proteína Amiloide A Sérica/metabolismo
16.
J Proteome Res ; 14(7): 2792-806, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26011469

RESUMO

Cardiovascular disease is the leading cause of death in end-stage renal disease (ESRD) patients treated with hemodialysis. An important contributor might be a decline in the cardioprotective effects of high-density lipoprotein (HDL). One important factor affecting HDL's cardioprotective properties may involve the alterations of protein composition in HDL. In the current study, we used complementary proteomics approaches to detect and quantify relative levels of proteins in HDL isolated from control and ESRD subjects. Shotgun proteomics analysis of HDL isolated from 20 control and 40 ESRD subjects identified 63 proteins in HDL. Targeted quantitative proteomics by isotope-dilution selective reaction monitoring revealed that 22 proteins were significantly enriched and 6 proteins were significantly decreased in ESRD patients. Strikingly, six proteins implicated in renal disease, including B2M, CST3, and PTGDS, were markedly increased in HDL of uremic subjects. Moreover, several of these proteins (SAA1, apoC-III, PON1, etc.) have been associated with atherosclerosis. Our observations indicate that the HDL proteome is extensively remodeled in uremic subjects. Alterations of the protein cargo of HDL might impact HDL's proposed cardioprotective properties. Quantifying proteins in HDL may be useful in the assessment of cardiovascular risk in patients with ESRD and in assessing response to therapeutic interventions.


Assuntos
Falência Renal Crônica/sangue , Lipoproteínas HDL/sangue , Diálise Renal , Adulto , Sequência de Aminoácidos , Cistatina C/química , Feminino , Humanos , Falência Renal Crônica/terapia , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular
17.
Circ Res ; 112(10): 1345-54, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23501697

RESUMO

RATIONALE: Macrophage accumulation in adipose tissue associates with insulin resistance and increased cardiovascular disease risk. We previously have shown that generation of reactive oxygen species and monocyte chemotactic factors after exposure of adipocytes to saturated fatty acids, such as palmitate, occurs via translocation of NADPH oxidase 4 into lipid rafts (LRs). The anti-inflammatory effects of apolipoprotein AI (apoAI) and high-density lipoprotein (HDL) on macrophages and endothelial cells seem to occur via cholesterol depletion of LRs. However, little is known concerning anti-inflammatory effects of HDL and apoAI on adipocytes. OBJECTIVE: To determine whether apoAI and HDL inhibit inflammation in adipocytes and adipose tissue, and whether this is dependent on LRs. METHODS AND RESULTS: In 3T3L-1 adipocytes, apoAI, HDL, and methyl-ß-cyclodextrin inhibited chemotactic factor expression. ApoAI and HDL also disrupted LRs, reduced plasma membrane cholesterol content, inhibited NADPH oxidase 4 translocation into LRs, and reduced palmitate-induced reactive oxygen species generation and monocyte chemotactic factor expression. Silencing ATP-binding cassette A-1 abrogated the effect of apoAI, but not HDL, whereas silencing ATP-binding cassette G-1 or scavenger receptor B-1 abrogated the effect of HDL but not apoAI. In vivo, apoAI transgenic mice fed a high-fat, high-sucrose, cholesterol-containing diet showed reduced chemotactic factor and proinflammatory cytokine expression and reduced macrophage accumulation in adipose tissue. CONCLUSIONS: ApoAI and HDL have anti-inflammatory effects in adipocytes and adipose tissue similar to their effects in other cell types. These effects are consistent with disruption and removal of cholesterol from LRs, which are regulated by cholesterol transporters, such as ATP-binding cassette A-1, ATP-binding cassette G-1, and scavenger receptor B-1.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Adipócitos/metabolismo , Apolipoproteína A-I/metabolismo , Colesterol/metabolismo , Lipoproteínas HDL/metabolismo , Lipoproteínas/metabolismo , Receptores Depuradores Classe B/metabolismo , Células 3T3-L1 , Transportador 1 de Cassete de Ligação de ATP , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Apolipoproteína A-I/genética , Apolipoproteína A-I/farmacologia , Transporte Biológico/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Técnicas In Vitro , Inflamação/metabolismo , Lipoproteínas/efeitos dos fármacos , Lipoproteínas HDL/farmacologia , Masculino , Microdomínios da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , RNA Interferente Pequeno/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Receptores de LDL/deficiência , Receptores de LDL/genética , Receptores de LDL/metabolismo , Receptores Depuradores Classe B/efeitos dos fármacos
18.
FASEB J ; 27(7): 2880-92, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23543682

RESUMO

Nascent high-density lipoprotein (HDL) particles arise in different sizes. We have sought to uncover factors that control this size heterogeneity. Gel filtration, native PAGE, and protein cross-linking were used to analyze the size heterogeneity of nascent HDL produced by BHK-ABCA1, RAW 264.7, J774, and HepG2 cells under different levels of two factors considered as a ratio, the availability of apolipoprotein AI (apoAI) -accessible cell lipid, and concentration of extracellular lipid-free apoAI. Increases in the available cell lipid:apoAI ratio due to either elevated ATP-binding cassette transporter A1 (ABCA1) expression and activity or raised cell density (i.e., increasing numerator) shifted the production of nascent HDL from smaller particles with fewer apoAI molecules per particle and fewer molecules of choline-phospholipid and cholesterol per apoAI molecule to larger particles that contained more apoAI and more lipid per molecule of apoAI. A further shift to larger particles was observed in BHK-ABCA1 cells when the available cell lipid:apoAI ratio was raised still higher by decreasing the apoAI concentration (i.e., the denominator). These changes in nascent HDL biogenesis were reminiscent of the transition that occurs in the size composition of reconstituted HDL in response to an increasing initial lipid:apoAI molar ratio. Thus, the ratio of available cell lipid:apoAI is a fundamental cause of nascent HDL size heterogeneity, and rHDL formation is a good model of nascent HDL biogenesis.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Apolipoproteína A-I/metabolismo , Lipídeos/análise , Lipoproteínas HDL/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Apolipoproteína A-I/química , Contagem de Células , Linhagem Celular , Colesterol/metabolismo , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Células Hep G2 , Humanos , Cinética , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/química , Lipoproteínas HDL/química , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Mifepristona/farmacologia , Mutação , Tamanho da Partícula
19.
PLoS One ; 19(2): e0296052, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38408107

RESUMO

HDL-apolipoprotein A-I exchange (HAE) measures a functional property associated with HDL's ability to mediate reverse cholesterol transport. HAE has been used to examine HDL function in case-control studies but not in studies of therapeutics that alter HDL particle composition. This study investigates whether niacin and omega-3 fatty acids induce measurable changes in HAE using a cohort of fifty-six subjects with metabolic syndrome (MetS) who were previously recruited to a double-blind trial where they were randomized to 16 weeks of treatment with dual placebo, extended-release niacin (ERN, 2g/day), prescription omega-3 ethyl esters (P-OM3, 4g/day), or the combination. HAE was assessed at the beginning and end of the study. Compared to placebo, ERN and P-OM3 alone significantly increased HAE by 15.1% [8.2, 22.0] (P<0.0001) and 11.1% [4.5, 17.7] (P<0.0005), respectively, while in combination they increased HAE by 10.0% [2.5, 15.8] (P = 0.005). When HAE was evaluated per unit mass of apoA-I ERN increased apoA-I specific exchange activity by 20% (2, 41 CI, P = 0.02) and P-OM3 by 28% (9.6, 48 CI, P<0.0006). However the combination had no statistically significant effect, 10% (-9, 31 CI, P = 0.39). With regard to P-OM3 therapy in particular, the HAE assay detected an increase in this property in the absence of a concomitant rise in HDL-C and apoA-I levels, suggesting that the assay can detect functional changes in HDL that occur in the absence of traditional biomarkers.


Assuntos
Ácidos Graxos Ômega-3 , Síndrome Metabólica , Niacina , Humanos , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Niacina/uso terapêutico , Apolipoproteína A-I/uso terapêutico , Síndrome Metabólica/tratamento farmacológico , HDL-Colesterol , Método Duplo-Cego
20.
Biochim Biophys Acta ; 1821(3): 522-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21920460

RESUMO

ATP-binding cassette transporter A1 (ABCA1) is an integral cell membrane protein that protects cardiovascular disease by at least two mechanisms: by export of excess cholesterol from cells and by suppression of inflammation. ABCA1 exports cholesterol and phospholipids from cells by multiple steps that involve forming cell surface lipid domains, binding of apolipoproteins to ABCA1, activating signaling pathways, and solubilizing these lipids by apolipoproteins. ABCA1 executes its anti-inflammatory effect by modifying cell membrane lipid rafts and directly activating signaling pathways. The interaction of apolipoproteins with ABCA1 activates multiple signaling pathways, including Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3), protein kinase A, Rho family G protein CDC42 and protein kinase C. Activating protein kinase A and Rho family G protein CDC42 regulates ABCA1-mediated lipid efflux, activating PKC stabilizes ABCA1 protein, and activating JAK2/STAT3 regulates both ABCA1-mediated lipid efflux and anti-inflammation. Thus, ABCA1 behaves both as a lipid exporter and a signaling receptor. Targeting ABCA1 receptor-like property using agonists for ABCA1 protein could become a promising new therapeutic target for increasing ABCA1 function and treating cardiovascular disease. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Transdução de Sinais , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/fisiologia , Animais , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Colesterol/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Terapia de Alvo Molecular , Proteólise , Proteína cdc42 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA