Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Math Biosci Eng ; 20(1): 1460-1487, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36650819

RESUMO

In order to cope with the rapid growth of flights and limited crew members, the rational allocation of crew members is a strategy to greatly alleviate scarcity. However, if there is no appropriate allocation plan, some flights may be canceled because there is no pilot in the scheduling period. In this paper, we solved an airline crew rostering problem (CRP). We model the CRP as an integer programming model with multiple constraints and objectives. In this model, the schedule of pilots takes into account qualification restrictions and language restrictions, while maximizing the fairness and satisfaction of pilots. We propose the design of two hybrid metaheuristic algorithms based on a genetic algorithm, variable neighborhood search algorithm and the Aquila optimizer to face the trade-off between fairness and crew satisfaction. The simulation results show that our approach preserves the fairness of the system and maximizes the fairness at the cost of crew satisfaction.


Assuntos
Algoritmos , Resolução de Problemas , Simulação por Computador
2.
Photoacoustics ; 31: 100506, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37397508

RESUMO

Magnetic resonance imaging (MRI) and photoacoustic tomography (PAT) offer two distinct image contrasts. To integrate these two modalities, we present a comprehensive hardware-software solution for the successive acquisition and co-registration of PAT and MRI images in in vivo animal studies. Based on commercial PAT and MRI scanners, our solution includes a 3D-printed dual-modality imaging bed, a 3-D spatial image co-registration algorithm with dual-modality markers, and a robust modality switching protocol for in vivo imaging studies. Using the proposed solution, we successfully demonstrated co-registered hybrid-contrast PAT-MRI imaging that simultaneously displays multi-scale anatomical, functional and molecular characteristics on healthy and cancerous living mice. Week-long longitudinal dual-modality imaging of tumor development reveals information on size, border, vascular pattern, blood oxygenation, and molecular probe metabolism of the tumor micro-environment at the same time. The proposed methodology holds promise for a wide range of pre-clinical research applications that benefit from the PAT-MRI dual-modality image contrast.

3.
Photoacoustics ; 32: 100536, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37575971

RESUMO

Photoacoustic tomography (PAT) images contain inherent distortions due to the imaging system and heterogeneous tissue properties. Improving image quality requires the removal of these system distortions. While model-based approaches and data-driven techniques have been proposed for PAT image restoration, achieving accurate and robust image recovery remains challenging. Recently, deep-learning-based image deconvolution approaches have shown promise for image recovery. However, PAT imaging presents unique challenges, including spatially varying resolution and the absence of ground truth data. Consequently, there is a pressing need for a novel learning strategy specifically tailored for PAT imaging. Herein, we propose a configurable network model named Deep hybrid Image-PSF Prior (DIPP) that builds upon the physical image degradation model of PAT. DIPP is an unsupervised and deeply learned network model that aims to extract the ideal PAT image from complex system degradation. Our DIPP framework captures the degraded information solely from the acquired PAT image, without relying on ground truth or labeled data for network training. Additionally, we can incorporate the experimentally measured Point Spread Functions (PSFs) of the specific PAT system as a reference to further enhance performance. To evaluate the algorithm's effectiveness in addressing multiple degradations in PAT, we conduct extensive experiments using simulation images, publicly available datasets, phantom images, and in vivo small animal imaging data. Comparative analyses with classical analytical methods and state-of-the-art deep learning models demonstrate that our DIPP approach achieves significantly improved restoration results in terms of image details and contrast.

4.
Neuroscience ; 337: 88-97, 2016 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-27615032

RESUMO

G protein-coupled receptors (GPCRs) are involved in many fundamental cellular responses such as growth, death, movement, transcription and excitation. Their roles in human stem cell neural specialization are not well understood. In this study, we aimed to identify GPCRs that may play a role in the differentiation of human embryonic stem cells (hESCs) to neural stem cells (NSCs). Using a feeder-free hESC neural differentiation protocol, we found that the expression of several chemokine receptors changed dramatically during the hESC/NSC transition. Especially, the expression of CXCR4 increased approximately 50 folds in NSCs compared to the original hESCs. CXCR4 agonist SDF-1 promoted, whereas the antagonist AMD3100 delayed the neural induction process. In consistence with antagonizing CXCR4, knockdown of CXCR4 in hESCs also blocked the neural induction and cells with reduced CXCR4 were rarely positive for Nestin and Sox1-staining. Taken together, our results suggest that CXCR4 is involved in the neural induction process of hESC and it might be considered as a target to facilitate NSC production from hESCs in regenerative medicine.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Neurais/citologia , Receptores CXCR4/metabolismo , Células Cultivadas , Humanos , Nestina/metabolismo , Células-Tronco Neurais/metabolismo , Receptores CXCR4/genética , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA