Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.944
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Immunol Rev ; 321(1): 128-142, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37553793

RESUMO

Immunogenic cell death (ICD) is one of the 12 distinct cell death forms, which can trigger immune system to fight against cancer cells. During ICD, a number of cellular changes occur that can stimulate an immune response, including the release of molecules called damage-associated molecular patterns (DAMPs), signaling to immune cells to recognize and attack cancer cells. By virtue of their pivotal role in immune surveillance, ICD-based drug development has been a new approach to explore novel therapeutic combinations and personalized strategies in cancer therapy. Several small molecules and microbes can induce ICD-relevant signals and cause cancer cell death. In this review, we highlighted the role of microbe-mediate ICD in cancer immunotherapy and described the mechanisms through which microbes might serve as ICD inducers in cancer treatment. We also discussed current attempts to combine microbes with chemotherapy regimens or immune checkpoint inhibitors (ICIs) in the treatment of cancer patients. We surmise that manipulation of microbes may guide personalized therapeutic interventions to facilitate anticancer immune response.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Morte Celular Imunogênica , Antineoplásicos/uso terapêutico , Morte Celular , Imunoterapia
2.
Nat Methods ; 20(11): 1748-1758, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37770712

RESUMO

The inhomogeneous refractive indices of biological tissues blur and distort single-molecule emission patterns generating image artifacts and decreasing the achievable resolution of single-molecule localization microscopy (SMLM). Conventional sensorless adaptive optics methods rely on iterative mirror changes and image-quality metrics. However, these metrics result in inconsistent metric responses and thus fundamentally limit their efficacy for aberration correction in tissues. To bypass iterative trial-then-evaluate processes, we developed deep learning-driven adaptive optics for SMLM to allow direct inference of wavefront distortion and near real-time compensation. Our trained deep neural network monitors the individual emission patterns from single-molecule experiments, infers their shared wavefront distortion, feeds the estimates through a dynamic filter and drives a deformable mirror to compensate sample-induced aberrations. We demonstrated that our method simultaneously estimates and compensates 28 wavefront deformation shapes and improves the resolution and fidelity of three-dimensional SMLM through >130-µm-thick brain tissue specimens.


Assuntos
Aprendizado Profundo , Microscopia , Óptica e Fotônica , Encéfalo
3.
Nucleic Acids Res ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39119921

RESUMO

Tn3 family transposons are a widespread group of replicative transposons, notorious for contributing to the dissemination of antibiotic resistance, particularly the global prevalence of carbapenem resistance. The transposase (TnpA) of these elements catalyzes DNA breakage and rejoining reactions required for transposition. However, the molecular mechanism for target site selection with these elements remains unclear. Here, we identify a QLxxLR motif in N-terminal of Tn3 TnpAs and demonstrate that this motif allows interaction between TnpA of Tn3 family transposon Tn1721 and the host ß-sliding clamp (DnaN), the major processivity factor of the DNA replication machinery. The TnpA-DnaN interaction is essential for Tn1721 transposition. Our work unveils a mechanism whereby Tn3 family transposons can bias transposition into certain replisomes through an interaction with the host replication machinery. This study further expands the diversity of mobile elements that use interaction with the host replication machinery to bias integration.

4.
Proc Natl Acad Sci U S A ; 120(49): e2305779120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38011555

RESUMO

Using a longitudinal approach, we sought to define the interplay between genetic and nongenetic factors in shaping vulnerability or resilience to COVID-19 pandemic stress, as indexed by the emergence of symptoms of depression and/or anxiety. University of Michigan freshmen were characterized at baseline using multiple psychological instruments. Subjects were genotyped, and a polygenic risk score for depression (MDD-PRS) was calculated. Daily physical activity and sleep were captured. Subjects were sampled at multiple time points throughout the freshman year on clinical rating scales, including GAD-7 and PHQ-9 for anxiety and depression, respectively. Two cohorts (2019 to 2021) were compared to a pre-COVID-19 cohort to assess the impact of the pandemic. Across cohorts, 26 to 40% of freshmen developed symptoms of anxiety or depression (N = 331). Depression symptoms significantly increased in the pandemic years and became more chronic, especially in females. Physical activity was reduced, and sleep was increased by the pandemic, and this correlated with the emergence of mood symptoms. While low MDD-PRS predicted lower risk for depression during a typical freshman year, this genetic advantage vanished during the pandemic. Indeed, females with lower genetic risk accounted for the majority of the pandemic-induced rise in depression. We developed a model that explained approximately half of the variance in follow-up depression scores based on psychological trait and state characteristics at baseline and contributed to resilience in genetically vulnerable subjects. We discuss the concept of multiple types of resilience, and the interplay between genetic, sex, and psychological factors in shaping the affective response to different types of stressors.


Assuntos
COVID-19 , Pandemias , Feminino , Humanos , COVID-19/epidemiologia , COVID-19/genética , Ansiedade/epidemiologia , Ansiedade/genética , Transtornos de Ansiedade , Afeto , Depressão/epidemiologia , Depressão/genética
5.
PLoS Pathog ; 19(8): e1011570, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37643174

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) can cause severe acute infections, including pneumonia and sepsis, and cause chronic infections, commonly in patients with structural respiratory diseases. However, the molecular and pathophysiological mechanisms of P. aeruginosa respiratory infection are largely unknown. Here, we performed assays for transposase-accessible chromatin using sequencing (ATAC-seq), transcriptomics, and quantitative mass spectrometry-based proteomics and ubiquitin-proteomics in P. aeruginosa-infected lung tissues for multi-omics analysis, while ATAC-seq and transcriptomics were also examined in P. aeruginosa-infected mouse macrophages. To identify the pivotal factors that are involved in host immune defense, we integrated chromatin accessibility and gene expression to investigate molecular changes in P. aeruginosa-infected lung tissues combined with proteomics and ubiquitin-proteomics. Our multi-omics investigation discovered a significant concordance for innate immunological and inflammatory responses following P. aeruginosa infection between hosts and alveolar macrophages. Furthermore, we discovered that multi-omics changes in pioneer factors Stat1 and Stat3 play a crucial role in the immunological regulation of P. aeruginosa infection and that their downstream molecules (e.g., Fas) may be implicated in both immunosuppressive and inflammation-promoting processes. Taken together, these findings indicate that transcription factors and their downstream signaling molecules play a critical role in the mobilization and rebalancing of the host immune response against P. aeruginosa infection and may serve as potential targets for bacterial infections and inflammatory diseases, providing insights and resources for omics analyses.


Assuntos
Pneumonia , Pseudomonas aeruginosa , Animais , Camundongos , Multiômica , Cromatina , Ubiquitinas
6.
Plant Cell ; 34(1): 10-52, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34633455

RESUMO

In this glossary of plant cell structures, we asked experts to summarize a present-day view of plant organelles and structures, including a discussion of outstanding questions. In the following short reviews, the authors discuss the complexities of the plant cell endomembrane system, exciting connections between organelles, novel insights into peroxisome structure and function, dynamics of mitochondria, and the mysteries that need to be unlocked from the plant cell wall. These discussions are focused through a lens of new microscopy techniques. Advanced imaging has uncovered unexpected shapes, dynamics, and intricate membrane formations. With a continued focus in the next decade, these imaging modalities coupled with functional studies are sure to begin to unravel mysteries of the plant cell.


Assuntos
Membrana Celular/metabolismo , Parede Celular/metabolismo , Mitocôndrias/metabolismo , Peroxissomos/metabolismo , Plantas/metabolismo , Organelas/metabolismo , Células Vegetais/metabolismo
7.
FASEB J ; 38(15): e23864, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39109513

RESUMO

Little is known about the blood-feeding physiology of arbovirus vector Aedes aegypti although this type of mosquito is known to transmit infectious diseases dengue, Zika, yellow fever, and chikungunya. Blood feeding in the female A. aegypti mosquito is essential for egg maturation and for transmission of disease agents between human subjects. Here, we identify the A. aegypti sulfakinin receptor gene SKR from the A. aegypti genome and show that SKR is expressed at different developmental stages and in varied anatomical localizations in the adult mosquito (at three days after eclosion), with particularly high expression in the CNS. Knockingdown sulfakinin and sulfakinin receptor gene expression in the female A. aegypti results in increased blood meal intake, but microinjection in the thorax of the sulfakinin peptide 1 and 2 both inhibits dose dependently blood meal intake (and delays the time course of blood intake), which is reversible with receptor antagonist. Sulfakinin receptor expressed ectopically in mammalian cells CHO-K1 responds to sulfakinin stimulation with persistent calcium spikes, blockable with receptor antagonist. These data together suggest that activation of the Gq protein-coupled (i.e., calcium-mobilizing) sulfakinin receptor inhibits blood meal intake in female A. aegypti mosquitoes and could serve as a strategic node for the future control of A. aegypti mosquito reproduction/population and disease transmission.


Assuntos
Aedes , Receptores Acoplados a Proteínas G , Animais , Aedes/metabolismo , Aedes/genética , Feminino , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Células CHO , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Cricetulus , Comportamento Alimentar/fisiologia , Mosquitos Vetores
8.
PLoS Biol ; 20(10): e3001831, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36269771

RESUMO

The nuclear basket (NB) is an essential structure of the nuclear pore complex (NPC) and serves as a dynamic and multifunctional platform that participates in various critical nuclear processes, including cargo transport, molecular docking, and gene expression regulation. However, the underlying molecular mechanisms are not completely understood, particularly in plants. Here, we identified a guanylate-binding protein (GBP)-like GTPase (GBPL3) as a novel NPC basket component in Arabidopsis. Using fluorescence and immunoelectron microscopy, we found that GBPL3 localizes to the nuclear rim and is enriched in the nuclear pore. Proximity labeling proteomics and protein-protein interaction assays revealed that GBPL3 is predominantly distributed at the NPC basket, where it physically associates with NB nucleoporins and recruits chromatin remodelers, transcription apparatus and regulators, and the RNA splicing and processing machinery, suggesting a conserved function of the NB in transcription regulation as reported in yeasts and animals. Moreover, we found that GBPL3 physically interacts with the nucleoskeleton via disordered coiled-coil regions. Simultaneous loss of GBPL3 and one of the 4 Arabidopsis nucleoskeleton genes CRWNs led to distinct development- and stress-related phenotypes, ranging from seedling lethality to lesion development, and aberrant transcription of stress-related genes. Our results indicate that GBPL3 is a bona fide component of the plant NPC and physically and functionally connects the NB with the nucleoskeleton, which is required for the coordination of gene expression during plant development and stress responses.


Assuntos
Arabidopsis , Poro Nuclear , Animais , Poro Nuclear/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Simulação de Acoplamento Molecular , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Matriz Nuclear , Plantas/metabolismo
9.
Drug Resist Updat ; 73: 101052, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262246

RESUMO

AIMS: This investigation aims to elucidate the mechanism underlying sorafenib-induced ferroptosis in hepatocellular carcinoma (HCC). METHODS: The role of dual specificity phosphatase 4 (DUSP4) in sorafenib-treated HCC was investigated using comprehensive assessments both in vitro and in vivo, including Western blotting, qRT-PCR, cell viability assay, lipid reactive oxygen species (ROS) assay, immunohistochemistry, and xenograft tumor mouse model. Additionally, label-free quantitative proteomics was employed to identify potential proteins associated with DUSP4. RESULTS: Our study revealed that suppression of DUSP4 expression heightens the susceptibility of HCC cells to ferroptosis inducers, specifically sorafenib and erastin, in both in vitro and in vivo settings. Furthermore, we identified DUSP4-mediated regulation of key ferroptosis-related markers, such as ferritin light chain (FTL) and ferritin heavy chain 1 (FTH1). Notably, label-free quantitative proteomics unveiled the phosphorylation of threonine residue T148 on YTH Domain Containing 1 (YTHDC1) by DUSP4. Further investigations unraveled that YTHDC1, functioning as an mRNA nuclear export regulator, is a direct target of DUSP4, orchestrating the subcellular localization of FTL and FTH1 mRNAs. Significantly, our study highlights a strong correlation between elevated DUSP4 expression and sorafenib resistance in HCC. CONCLUSIONS: Our findings introduce DUSP4 as a negative regulator of sorafenib-induced ferroptosis. This discovery opens new avenues for the development of ferroptosis-based therapeutic strategies tailored for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Fosfatases de Especificidade Dupla , Ferroptose , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Ferroptose/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Monoéster Fosfórico Hidrolases/uso terapêutico , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo
10.
J Cell Mol Med ; 28(8): e18307, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613342

RESUMO

Mucopolysaccharidosis type IIIC (MPS IIIC) is one of inherited lysosomal storage disorders, caused by deficiencies in lysosomal hydrolases degrading acidic mucopolysaccharides. The gene responsible for MPS IIIC is HGSNAT, which encodes an enzyme that catalyses the acetylation of the terminal glucosamine residues of heparan sulfate. So far, few studies have focused on the genetic landscape of MPS IIIC in China, where IIIA and IIIB were the major subtypes. In this study, we utilized whole-exome sequencing (WES) to identify novel compound heterozygous variants in the HGSNAT gene from a Chinese patient with typical MPS IIIC symptoms: c.743G>A; p.Gly248Glu and c.1030C>T; p.Arg344Cys. We performed in silico analysis and experimental validation, which confirmed the deleterious pathogenic nature of both variants, as evidenced by the loss of HGSNAT activity and failure of lysosomal localization. To the best of our knowledge, the MPS IIIC is first confirmed by clinical, biochemical and molecular genetic findings in China. Our study thus expands the spectrum of MPS IIIC pathogenic variants, which is of importance to dissect the pathogenesis and to carry out clinical diagnosis of MPS IIIC. Moreover, this study helps to depict the natural history of Chinese MPS IIIC populations.


Assuntos
Mucopolissacaridoses , Mucopolissacaridose III , Humanos , Acetilação , Acetiltransferases , Povo Asiático/genética , China , Mucopolissacaridoses/genética , Mucopolissacaridose III/genética
11.
J Cell Mol Med ; 28(8): e18292, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652116

RESUMO

Foodborne illnesses, particularly those caused by Salmonella enterica with its extensive array of over 2600 serovars, present a significant public health challenge. Therefore, prompt and precise identification of S. enterica serovars is essential for clinical relevance, which facilitates the understanding of S. enterica transmission routes and the determination of outbreak sources. Classical serotyping methods via molecular subtyping and genomic markers currently suffer from various limitations, such as labour intensiveness, time consumption, etc. Therefore, there is a pressing need to develop new diagnostic techniques. Surface-enhanced Raman spectroscopy (SERS) is a non-invasive diagnostic technique that can generate Raman spectra, based on which rapid and accurate discrimination of bacterial pathogens could be achieved. To generate SERS spectra, a Raman spectrometer is needed to detect and collect signals, which are divided into two types: the expensive benchtop spectrometer and the inexpensive handheld spectrometer. In this study, we compared the performance of two Raman spectrometers to discriminate four closely associated S. enterica serovars, that is, S. enterica subsp. enterica serovar dublin, enteritidis, typhi and typhimurium. Six machine learning algorithms were applied to analyse these SERS spectra. The support vector machine (SVM) model showed the highest accuracy for both handheld (99.97%) and benchtop (99.38%) Raman spectrometers. This study demonstrated that handheld Raman spectrometers achieved similar prediction accuracy as benchtop spectrometers when combined with machine learning models, providing an effective solution for rapid, accurate and cost-effective identification of closely associated S. enterica serovars.


Assuntos
Salmonella enterica , Sorogrupo , Análise Espectral Raman , Máquina de Vetores de Suporte , Análise Espectral Raman/métodos , Salmonella enterica/isolamento & purificação , Humanos , Algoritmos
12.
Mol Pain ; 20: 17448069241232349, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38288478

RESUMO

Background. Neuro-inflammatory response promotes the initiation and sustenance of lumbar disc herniation (LDH). Protectin D1 (PD1), as a new type of specialized pro-resolving mediator (SPM), can improve the prognosis of various inflammatory diseases. Recent studies have shown that over representation of calcitonin gene-related peptides (CGRP) may activate nociceptive signaling following nerve injury. Silent information regulator 1 (SIRT1) is ubiquitously expressed in the dorsal horn of the spinal cord and plays a role in the pathogenesis of LDH. In this study, we investigated the analgesic effects of PD1 and elucidated the impact of neurogenic inflammation in the pathogenesis of neuropathic pain induced by non-compressive lumbar disc herniation (NCLDH) in a rat model. Methods. NCLDH models were established by applying protruding autologous nucleus pulposus to the L5 Dorsal root ganglion (DRG). PD1, SIRT1 antagonist or agonist, CGRP or antagonist were administered as daily intrathecal injections for three consecutive days postoperatively. Behavioral tests were conducted to assess mechanical and thermal hyperalgesia. The ipsilateral lumbar (L4-6) segment of the spinal dorsal horn was isolated for further analysis. Alterations in the release of SIRT1 and CGRP were explored using western blot and immunofluorescence. Results. Application of protruded nucleus (NP) materials to the DRG induced mechanical and thermal allodynia symptoms, and deregulated the expression of pro-inflammatory and anti-inflammatory cytokines in rats. Intrathecal delivery of PD1 significantly reversed the NCLDH-induced imbalance in neuro-inflammatory response and alleviated the symptoms of mechanical and thermal hyperalgesia. In addition, NP application to the DGRs resulted the spinal upregulation of CGRP and SIRT1 expression, which was almost restored by intrathecal injection of PD1 in a dose-dependent manner. SIRT1 antagonist or agonist and CGRP or antagonist treatment further confirmed the result. Conclusion. Our findings indicate PD1 has a potent analgesic effect, and can modulate neuro-inflammation by regulating SIRT1-mediated CGRP signaling in NCLDH.


Assuntos
Ácidos Docosa-Hexaenoicos , Deslocamento do Disco Intervertebral , Ratos , Animais , Deslocamento do Disco Intervertebral/tratamento farmacológico , Deslocamento do Disco Intervertebral/complicações , Hiperalgesia/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Ratos Sprague-Dawley , Sirtuína 1/metabolismo , Calcitonina/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Analgésicos/farmacologia , Gânglios Espinais/metabolismo , Modelos Animais de Doenças
13.
Curr Issues Mol Biol ; 46(2): 1503-1515, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38392215

RESUMO

The diversity of leaf characteristics, particularly leaf color, underscores a pivotal area of inquiry within plant science. The synthesis and functionality of chlorophyll, crucial for photosynthesis, largely dictate leaf coloration, with varying concentrations imparting different shades of green. Complex gene interactions regulate the synthesis and degradation of chlorophyll, and disruptions in these pathways can result in abnormal chlorophyll production, thereby affecting leaf pigmentation. This study focuses on Bambusa multiplex f. silverstripe, a natural variant distinguished by a spectrum of leaf colors, such as green, white, and green-white, attributed to genetic variations influencing gene expression. By examining the physiological and molecular mechanisms underlying chlorophyll anomalies and genetic factors in Silverstripe, this research sheds light on the intricate gene interactions and regulatory networks that contribute to leaf color diversity. The investigation includes the measurement of photosynthetic pigments and nutrient concentrations across different leaf color types, alongside transcriptomic analyses for identifying differentially expressed genes. The role of key genes in pathways such as ALA biosynthesis, chlorophyll synthesis, photosynthesis, and sugar metabolism is explored, offering critical insights for advancing research and plant breeding practices.

14.
Anal Chem ; 96(14): 5437-5445, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38529794

RESUMO

The research on fluorescent rotors for viscosity has attracted extensive interest to better comprehend the close relationships of microviscosity variations with related diseases. Although scientists have made great efforts, fluorescent probes for cellular viscosity with both aggregation-induced emissions (AIEs) and large Stokes shifts to improve sensing properties have rarely been reported. Herein, we first report four new meso-C═N-substituted BODIPY-based rotors with large Stokes shifts, investigate their viscosity/AIE characteristics, and perform cellular imaging of the viscosity in subcellular organelles. Interestingly, the meso-C═N-phenyl group-substituted probe 6 showed an obvious 594 nm fluorescence enhancement in glycerol and a moderate 650 nm red AIE emission in water. Further, on attaching CF3 to the phenyl group, a similar phenomenon was observed for 7 with red-shifted emissions, attributed to the introduction of a phenyl group, which plays a key role in the red AIE emissions and large Stokes shifts. Comparatively, for phenyl-group-free probes, both the meso-C═N-trifluoroethyl group and thiazole-substituted probes (8 and 9) exhibited good viscosity-responsive properties, while no AIE was observed due to the absence of phenyl groups. For cellular experiments, 6 and 9 showed good lysosomal and mitochondrial targeting properties, respectively, and were further successfully used for imaging viscosity through the preincubation of monensin and lipopolysaccharide (LPS), indicating that C═N polar groups potentially work as rotatable moieties and organelle-targeting groups, and the targeting difference might be ascribed to increased charges of thiazole. Therefore, in this study, we investigated the structural relationships of four meso-C═N BODIPY-based rotors with respect to their viscosity/AIE characteristics, subcellular-targeting ability, and cellular imaging for viscosity, potentially serving as AIE fluorescent probes with large Stokes shifts for subcellular viscosity imaging.


Assuntos
Compostos de Boro , Corantes Fluorescentes , Organelas , Corantes Fluorescentes/química , Viscosidade , Tiazóis
15.
Cancer Immunol Immunother ; 73(8): 151, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832951

RESUMO

BACKGROUND: Immunotherapy for gastric cancer remains a challenge due to its limited efficacy. Metabolic reprogramming toward glycolysis has emerged as a promising avenue for enhancing the sensitivity of tumors to immunotherapy. Pyruvate dehydrogenase kinases (PDKs) play pivotal roles in regulating glycolysis. The importance of PDKs in the context of gastric cancer immunotherapy and their potential as therapeutic targets have not been fully explored. METHODS: PDK and PD-L1 expression was analyzed using data from the GSE66229 and The Cancer Genome Atlas (TCGA) cohorts. Additionally, the Immune Checkpoint Blockade Therapy Atlas (ICBatlas) database was utilized to assess PDK expression in an immune checkpoint blockade (ICB) therapy group. Subsequently, the upregulation of PD-L1 and the enhancement of anticancer effects achieved by targeting PDK were validated through in vivo and in vitro assays. The impact of PDK on histone acetylation was investigated using ChIP‒qPCR to detect changes in histone acetylation levels. RESULTS: Our analysis revealed a notable negative correlation between PD-L1 and PDK expression. Downregulation of PDK led to a significant increase in PD-L1 expression. PDK inhibition increased histone acetylation levels by promoting acetyl-CoA generation. The augmentation of acetyl-CoA production and concurrent inhibition of histone deacetylation were found to upregulate PD-L1 expression in gastric cancer cells. Additionally, we observed a significant increase in the anticancer effect of PD-L1 antibodies following treatment with a PDK inhibitor. CONCLUSIONS: Downregulation of PDK in gastric cancer cells leads to an increase in PD-L1 expression levels, thus potentially improving the efficacy of PD-L1 immune checkpoint blockade therapy.


Assuntos
Antígeno B7-H1 , Glicólise , Imunoterapia , Piruvato Desidrogenase Quinase de Transferência de Acetil , Neoplasias Gástricas , Regulação para Cima , Antígeno B7-H1/metabolismo , Humanos , Animais , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Imunoterapia/métodos , Camundongos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus
16.
Small ; 20(26): e2311130, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38247198

RESUMO

Nuclear energy holds great potential to facilitate the global energy transition and alleviate the increasing environmental issues due to its high energy density, stable energy output, and carbon-free emission merits. Despite being limited by the insufficient terrestrial uranium reserves, uranium extraction from seawater (UES) can offset the gap. However, the low uranium concentration, the complicated uranium speciation, the competitive metal ions, and the inevitable marine interference remarkably affect the kinetics, capacity, selectivity, and sustainability of UES materials. To date, massive efforts have been made with varying degrees of success to pursue a desirable UES performance on various nanomaterials. Nevertheless, comprehensive and systematic coverage and discussion on the emerging UES materials presenting the fast-growing progress of this field is still lacking. This review thus challenges this position and emphatically focuses on this topic covering the current mainstream UES technologies with the emerging UES materials. Specifically, this review elucidates the causality between the physiochemical properties of UES materials induced by the intellectual design strategies and the UES performances and further dissects the relationships of materials-properties-activities and the corresponding mechanisms in depth. This review is envisaged to inspire innovative ideas and bring technical solutions for developing technically and economically viable UES materials.

17.
Small ; : e2402726, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651509

RESUMO

Heterogeneous catalysts have attracted extensive attention among various emerging catalysts for their exceptional oxygen evolution reaction (OER) capabilities, outperforming their single-component counterparts. Nonetheless, the synthesis of heterogeneous materials with predictable, precise, and facile control remains a formidable challenge. Herein, a novel strategy involving the decoration of catalysts with CeO2 is introduced to concurrently engineer heterogeneous interfaces and adjust phase composition, thereby enhancing OER performance. Theoretical calculations suggest that the presence of ceria reduces the free energy barrier for the conversion of nitrides into metals. Supporting this, the experimental findings reveal that the incorporation of rare earth oxides enables the controlled phase transition from nitride into metal, with the proportion adjustable by varying the amount of added rare earth. Thanks to the role of CeO2 decoration in promoting the reaction kinetics and fostering the formation of the genuine active phase, the optimized Ni3FeN/Ni3Fe/CeO2-5% nanoparticles heterostructure catalyst exhibits outstanding OER activity, achieving an overpotential of just 249 mV at 10 mA cm-2. This approach offers fresh perspectives for the conception of highly efficient heterogeneous OER catalysts, contributing a strategic avenue for advanced catalytic design in the field of energy conversion.

18.
Small ; 20(12): e2307393, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37897146

RESUMO

Described here are sterically hindered tetradentate [Pt(O^N^C^N)] emitters (Pt-1, Pt-2, and Pt-3) developed for stable and high-performance green phosphorescent organic light-emitting diodes (OLEDs). These Pt(II) emitters exhibit strong saturated green phosphorescence (λmax = 517-531 nm) in toluene and mCP thin films with emission quantum yields as high as 0.97, radiative rate constants (kr) as high as 4.4-5.3 × 105 s-1 and reduced excimer emission, and with a preferential horizontally oriented transition dipole ratio of up to 84%. Theoretical calculations show that p-(hetero)arene substituents at the periphery of the ligand scaffolds in Pt-1, Pt-2, and Pt-3 can i) enhance the spin-orbit coupling (SOC) between the lower singlet excited states and the T1 state, and S0→Sn (n = 1 or 2) transition dipole moment, and ii) introducing additional SOC activity and the bright 1ILCT[π(carbazole)→π*(N^C^N)] excited state (Pt-2 and Pt-3), which are the main contributors to the increased kr values. Utilizing these tetradentate Pt(II) emitters, green phosphorescent OLEDs are fabricated with narrow-band electroluminescence (FWHM down to 36 nm), high external quantum efficiency, current efficiency up to 27.6% and 98.7 cd A-1, and an unprecedented device lifetime (LT95) of up to 9270 h at 1000 cd m-2 under laboratory conditions.

19.
Small ; 20(4): e2305251, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37718454

RESUMO

Alternating current electroluminescence (ACEL) devices are attractive candidates in cost-effective lighting, sensing, and flexible displays due to their uniform luminescence, stable performance, and outstanding deformability. However, ACEL devices have suffered from limited options for the light-emitting layer, which presents a significant constraint in the progress of utilizing ACEL. Herein, a new class of ACEL phosphors based on lanthanide metal-organic frameworks (Ln-MOFs) is devised. A synthesis of lanthanide-benzenetricarboxylate (Ln-BTC) thin film on a brass grid substrate seeded with ZnO nanowires (NWs) as anchors is developed. The as-synthesized Ln-BTC thin film is employed as the emissive layer and shows visible electroluminescence driven by alternating current (2.9 V µm-1 , 1 kHz) for the first time. Mechanistic investigations reveal that the Ln-based ACEL stems from impact excitation by accelerated electrons from ZnO NWs. Fine-tuning of the ACEL color is also demonstrated by controlling the Ln-MOF compositions and introducing an extra ZnS emitting layer. The advances in these optical materials expand the application of ACEL devices in anti-counterfeiting.

20.
Small ; 20(31): e2311505, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38433398

RESUMO

The rational design of heterogeneous catalysts is crucial for achieving optimal physicochemical properties and high electrochemical activity. However, the development of new amorphous-crystalline heterostructures is significantly more challenging than that of the existing crystalline-crystalline heterostructures. To overcome these issues, a coordination-assisted strategy that can help fabricate an amorphous NiO/crystalline NiCeOx (a-NiO/c-NiCeOx) heterostructure is reported herein. The coordination geometry of the organic ligands plays a pivotal role in permitting the formation of coordination polymers with high Ni contents. This consequently provides an opportunity for enabling the supersaturation of Ni in the NiCeOx structure during annealing, leading to the endogenous spillover of Ni from the depths of NiCeOx to its surface. The resulting heterostructure, featuring strongly coupled amorphous NiO and crystalline NiCeOx, exhibits harmonious interactions in addition to low overpotentials and high catalytic stability in the oxygen evolution reaction (OER). Theoretical calculations prove that the amorphous-crystalline interfaces facilitate charge transfer, which plays a critical role in regulating the local electron density of the Ni sites, thereby promoting the adsorption of oxygen-based intermediates on the Ni sites and lowering the dissociation-related energy barriers. Overall, this study underscores the potential of coordinating different metal ions at the molecular level to advance amorphous-crystalline heterostructure design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA