Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Magn Reson Imaging ; 85: 168-176, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34666159

RESUMO

A recently developed compact 3 T (C3T) MRI scanner with high performance gradients [1, 2] has a dedicated radiofrequency (RF) transmit coil that exposes only the head, neck and a small portion of the upper body region during head-first scanning. Due to the unique coil geometry and patient positioning, the established SAR model used for a conventional whole-body scanner cannot be directly translated to the C3T. Here a specific absorption rate (SAR) estimation and validation framework was developed and used to implement a dedicated and accurate SAR prediction model for the C3T. Two different SAR prediction models for the C3T were defined and evaluated: one based on an anatomically derived exposed mass, and one using a fixed anatomical position located caudally to the RF coil to determine the exposed mass. After coil modeling and virtual human body simulation, the designed SAR prediction model was implemented on the C3T and verified with calorimetry and in vivo scan power monitoring. The fixed-demarcation exposed mass model was selected as appropriate exposed mass region to accurately estimate the SAR deposition in the patient on the C3T.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Simulação por Computador , Humanos , Posicionamento do Paciente , Imagens de Fantasmas
2.
Phys Med Biol ; 59(9): 2139-54, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24699230

RESUMO

Clinical studies have established a strong benefit from adjuvant mild hyperthermia (HT) to radio- and chemotherapy for many tumor sites, including the head and neck (H&N). The recently developed HYPERcollar allows the application of local radiofrequency HT to tumors in the entire H&N. Treatment quality is optimized using electromagnetic and thermal simulators and, whenever placement risk is tolerable, assessed using invasively placed thermometers. To replace the current invasive procedure, we are investigating whether magnetic resonance (MR) thermometry can be exploited for continuous and 3D thermal dose assessment. In this work, we used our simulation tools to design an MR compatible laboratory prototype applicator. By simulations and measurements, we showed that the redesigned patch antennas are well matched to 50 Ω (S11<-10 dB). Simulations also show that, using 300 W input power, a maximum specific absorption rate (SAR) of 100 W kg(-1) and a temperature increase of 4.5 °C in 6 min is feasible at the center of a cylindrical fat/muscle phantom. Temperature measurements using the MR scanner confirmed the focused heating capabilities and MR compatibility of the setup. We conclude that the laboratory applicator provides the possibility for experimental assessment of the feasibility of hybrid MR-HT in the H&N region. This versatile design allows rigorous analysis of MR thermometry accuracy in increasingly complex phantoms that mimic patients' anatomies and thermodynamic characteristics.


Assuntos
Neoplasias de Cabeça e Pescoço/terapia , Hipertermia Induzida/instrumentação , Laboratórios , Imageamento por Ressonância Magnética , Terapia por Radiofrequência , Radioterapia Guiada por Imagem/instrumentação , Desenho de Equipamento , Temperatura Alta , Imagens de Fantasmas , Termometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA