Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(17)2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39275748

RESUMO

The Internet of Things (IoT) is a significant technological advancement that allows for seamless device integration and data flow. The development of the IoT has led to the emergence of several solutions in various sectors. However, rapid popularization also has its challenges, and one of the most serious challenges is the security of the IoT. Security is a major concern, particularly routing attacks in the core network, which may cause severe damage due to information loss. Routing Protocol for Low-Power and Lossy Networks (RPL), a routing protocol used for IoT devices, is faced with selective forwarding attacks. In this paper, we present a federated learning-based detection technique for detecting selective forwarding attacks, termed FL-DSFA. A lightweight model involving the IoT Routing Attack Dataset (IRAD), which comprises Hello Flood (HF), Decreased Rank (DR), and Version Number (VN), is used in this technique to increase the detection efficiency. The attacks on IoT threaten the security of the IoT system since they mainly focus on essential elements of RPL. The components include control messages, routing topologies, repair procedures, and resources within sensor networks. Binary classification approaches have been used to assess the training efficiency of the proposed model. The training step includes the implementation of machine learning algorithms, including logistic regression (LR), K-nearest neighbors (KNN), support vector machine (SVM), and naive Bayes (NB). The comparative analysis illustrates that this study, with SVM and KNN classifiers, exhibits the highest accuracy during training and achieves the most efficient runtime performance. The proposed system demonstrates exceptional performance, achieving a prediction precision of 97.50%, an accuracy of 95%, a recall rate of 98.33%, and an F1 score of 97.01%. It outperforms the current leading research in this field, with its classification results, scalability, and enhanced privacy.

2.
Sensors (Basel) ; 23(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38067745

RESUMO

The increasing reliance on cyber-physical systems (CPSs) in critical domains such as healthcare, smart grids, and intelligent transportation systems necessitates robust security measures to protect against cyber threats. Among these threats, blackhole and greyhole attacks pose significant risks to the availability and integrity of CPSs. The current detection and mitigation approaches often struggle to accurately differentiate between legitimate and malicious behavior, leading to ineffective protection. This paper introduces Gini-index and blockchain-based Blackhole/Greyhole RPL (GBG-RPL), a novel technique designed for efficient detection and mitigation of blackhole and greyhole attacks in smart health monitoring CPSs. GBG-RPL leverages the analytical prowess of the Gini index and the security advantages of blockchain technology to protect these systems against sophisticated threats. This research not only focuses on identifying anomalous activities but also proposes a resilient framework that ensures the integrity and reliability of the monitored data. GBG-RPL achieves notable improvements as compared to another state-of-the-art technique referred to as BCPS-RPL, including a 7.18% reduction in packet loss ratio, an 11.97% enhancement in residual energy utilization, and a 19.27% decrease in energy consumption. Its security features are also very effective, boasting a 10.65% improvement in attack-detection rate and an 18.88% faster average attack-detection time. GBG-RPL optimizes network management by exhibiting a 21.65% reduction in message overhead and a 28.34% decrease in end-to-end delay, thus showing its potential for enhanced reliability, efficiency, and security.

3.
Sensors (Basel) ; 23(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37177468

RESUMO

Numerous sensitive applications, such as healthcare and medical services, need reliable transmission as a prerequisite for the success of the new age of communications technology. Unfortunately, these systems are highly vulnerable to attacks like Sybil, where many false nodes are created and spread with deceitful intentions. Therefore, these false nodes must be instantly identified and isolated from the network due to security concerns and the sensitivity of data utilized in healthcare applications. Especially for life-threatening diseases like COVID-19, it is crucial to have devices connected to the Internet of Medical Things (IoMT) that can be believed to respond with high reliability and accuracy. Thus, trust-based security offers a safe environment for IoMT applications. This study proposes a blockchain-based fuzzy trust management framework (BFT-IoMT) to detect and isolate Sybil nodes in IoMT networks. The results demonstrate that the proposed BFT-IoMT framework is 25.43% and 12.64%, 12.54% and 6.65%, 37.85% and 19.08%, 17.40% and 8.72%, and 13.04% and 5.05% more efficient and effective in terms of energy consumption, attack detection, trust computation reliability, packet delivery ratio, and throughput, respectively, as compared to the other state-of-the-art frameworks available in the literature.


Assuntos
Blockchain , COVID-19 , Internet das Coisas , Humanos , Lógica Fuzzy , Reprodutibilidade dos Testes , Confiança
4.
Sensors (Basel) ; 22(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35746321

RESUMO

Recently, the Internet of Things (IoT) has emerged as an important way to connect diverse physical devices to the internet. The IoT paves the way for a slew of new cutting-edge applications. Despite the prospective benefits and many security solutions offered in the literature, the security of IoT networks remains a critical concern, considering the massive amount of data generated and transmitted. The resource-constrained, mobile, and heterogeneous nature of the IoT makes it increasingly challenging to preserve security in routing protocols, such as the routing protocol for low-power and lossy networks (RPL). RPL does not offer good protection against routing attacks, such as rank, Sybil, and sinkhole attacks. Therefore, to augment the security of RPL, this article proposes the energy-efficient multi-mobile agent-based trust framework for RPL (MMTM-RPL). The goal of MMTM-RPL is to mitigate internal attacks in IoT-based wireless sensor networks using fog layer capabilities. MMTM-RPL mitigates rank, Sybil, and sinkhole attacks while minimizing energy and message overheads by 25-30% due to the use of mobile agents and dynamic itineraries. MMTM-RPL enhances the security of RPL and improves network lifetime (by 25-30% or more) and the detection rate (by 10% or more) compared to state-of-the-art approaches, namely, DCTM-RPL, RBAM-IoT, RPL-MRC, and DSH-RPL.


Assuntos
Internet das Coisas , Confiança , Estudos Prospectivos
5.
Sensors (Basel) ; 21(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375153

RESUMO

A multitude of smart things and wirelessly connected Sensor Nodes (SNs) have pervasively facilitated the use of smart applications in every domain of life. Along with the bounties of smart things and applications, there are hazards of external and internal attacks. Unfortunately, mitigating internal attacks is quite challenging, where network lifespan (w.r.t. energy consumption at node level), latency, and scalability are the three main factors that influence the efficacy of security measures. Furthermore, most of the security measures provide centralized solutions, ignoring the decentralized nature of SN-powered Internet of Things (IoT) deployments. This paper presents an energy-efficient decentralized trust mechanism using a blockchain-based multi-mobile code-driven solution for detecting internal attacks in sensor node-powered IoT. The results validate the better performance of the proposed solution over existing solutions with 43.94% and 2.67% less message overhead in blackhole and greyhole attack scenarios, respectively. Similarly, the malicious node detection time is reduced by 20.35% and 11.35% in both blackhole and greyhole attacks. Both of these factors play a vital role in improving network lifetime.

6.
Sensors (Basel) ; 19(8)2019 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-31013993

RESUMO

The proliferation of inter-connected devices in critical industries, such as healthcare and power grid, is changing the perception of what constitutes critical infrastructure. The rising interconnectedness of new critical industries is driven by the growing demand for seamless access to information as the world becomes more mobile and connected and as the Internet of Things (IoT) grows. Critical industries are essential to the foundation of today's society, and interruption of service in any of these sectors can reverberate through other sectors and even around the globe. In today's hyper-connected world, the critical infrastructure is more vulnerable than ever to cyber threats, whether state sponsored, criminal groups or individuals. As the number of interconnected devices increases, the number of potential access points for hackers to disrupt critical infrastructure grows. This new attack surface emerges from fundamental changes in the critical infrastructure of organizations technology systems. This paper aims to improve understanding the challenges to secure future digital infrastructure while it is still evolving. After introducing the infrastructure generating big data, the functionality-based fog architecture is defined. In addition, a comprehensive review of security requirements in fog-enabled IoT systems is presented. Then, an in-depth analysis of the fog computing security challenges and big data privacy and trust concerns in relation to fog-enabled IoT are given. We also discuss blockchain as a key enabler to address many security related issues in IoT and consider closely the complementary interrelationships between blockchain and fog computing. In this context, this work formalizes the task of securing big data and its scope, provides a taxonomy to categories threats to fog-based IoT systems, presents a comprehensive comparison of state-of-the-art contributions in the field according to their security service and recommends promising research directions for future investigations.


Assuntos
Big Data , Segurança Computacional , Atenção à Saúde , Internet , Humanos , Privacidade
7.
Digit Health ; 10: 20552076241253757, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38798885

RESUMO

Background: Breakthroughs in skin cancer diagnostics have resulted from recent image recognition and Artificial Intelligence (AI) technology advancements. There has been growing recognition that skin cancer can be lethal to humans. For instance, melanoma is the most unpredictable and terrible form of skin cancer. Materials and Methodology: This paper aims to support Internet of Medical Things (IoMT) applications by developing a robust image classification model for the early detection of melanoma, a deadly skin cancer. It presents a novel approach to melanoma detection using a Convolutional Neural Network (CNN)-based method that employs image classification techniques based on Deep Learning (DL). We analyze dermatoscopic images from publicly available datasets, including DermIS, DermQuest, DermIS&Quest, and ISIC2019. Our model applies convolutional and pooling layers to extract meaningful features, followed by fully connected layers for classification. Results: The proposed CNN model achieves high accuracy demonstrates the model's effectiveness in distinguishing between malignant and benign skin lesions. We developed deep features and used transfer learning to improve the categorization accuracy of medical images. Soft-max classification layer and support vector machine have been used to assess the classification performance of deep features. The proposed model's efficacy is rigorously evaluated using benchmark datasets: DermIS, DermQuest, and ISIC2019, having 621, 1233, and 25000 images, respectively. Its performance is compared to current best practices showing an average of 5% improved detection accuracy in DermIS, 6% improvement in DermQuest, and 0.81% in ISIC2019 datasets. Conclusion: Our study showcases the potential of CNN in melanoma detection, contributing to early diagnosis and improved patient outcomes. The developed model proves its capability to aid dermatologists in accurate decision-making, paving the way for enhanced skin cancer diagnosis.

8.
Healthcare (Basel) ; 11(24)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38132075

RESUMO

Breast cancer continues to pose a substantial worldwide public health concern, necessitating the use of sophisticated diagnostic methods to enable timely identification and management. The present research utilizes an iterative methodology for collaborative learning, using Deep Neural Networks (DNN) to construct a breast cancer detection model with a high level of accuracy. By leveraging Federated Learning (FL), this collaborative framework effectively utilizes the combined knowledge and data assets of several healthcare organizations while ensuring the protection of patient privacy and data security. The model described in this study showcases significant progress in the field of breast cancer diagnoses, with a maximum accuracy rate of 97.54%, precision of 96.5%, and recall of 98.0%, by using an optimum feature selection technique. Data augmentation approaches play a crucial role in decreasing loss and improving model performance. Significantly, the F1-Score, a comprehensive metric for evaluating performance, turns out to be 97%. This study signifies a notable advancement in the field of breast cancer screening, fostering hope for improved patient outcomes via increased accuracy and reliability. This study highlights the potential impact of collaborative learning, namely, in the field of FL, in transforming breast cancer detection. The incorporation of privacy considerations and the use of diverse data sources contribute to the advancement of early detection and the treatment of breast cancer, hence yielding significant benefits for patients on a global scale.

9.
PLoS One ; 17(7): e0271277, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35901074

RESUMO

The Internet of Things (IoT) and its relevant advances have attracted significant scholarly, governmental, and industrial attention in recent years. Since the IoT specifications are quite different from what the Internet can deliver today, many groundbreaking techniques, such as Mobile Ad hoc Networks (MANETs) and Wireless Sensor Networks (WSN), have gradually been integrated into IoT. The Routing Protocol for Low power and Lossy network (RPL) is the de-facto IoT routing protocol in such networks. Unfortunately, it is susceptible to numerous internal attacks. Many techniques, such as cryptography, Intrusion Detection System (IDS), and authorization have been used to counter this. The large computational overhead of these techniques limits their direct application to IoT nodes, especially due to their low power and lossy nature. Therefore, this paper proposes a Trust-based Hybrid Cooperative RPL protocol (THC-RPL) to detect malicious Sybil nodes in an RPL-based IoT network. The proposed technique is compared and evaluated with state-of-the-art and is found to outperform them. It detects more attacks while maintaining the packet loss ratio in the range of 15-25%. The average energy consumption of the nodes also remains in the ratio of 60-80 mj. There is approximately 40% more energy conservation at node level with an overall 50% increase in network lifetime. THC-RPL has 10% less message exchange and 0% storage costs.


Assuntos
Redes de Comunicação de Computadores , Internet das Coisas , Algoritmos , Confiança , Tecnologia sem Fio
10.
Wirel Pers Commun ; 126(3): 2379-2401, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059591

RESUMO

With the emergence of COVID-19, smart healthcare, the Internet of Medical Things, and big data-driven medical applications have become even more important. The biomedical data produced is highly confidential and private. Unfortunately, conventional health systems cannot support such a colossal amount of biomedical data. Hence, data is typically stored and shared through the cloud. The shared data is then used for different purposes, such as research and discovery of unprecedented facts. Typically, biomedical data appear in textual form (e.g., test reports, prescriptions, and diagnosis). Unfortunately, such data is prone to several security threats and attacks, for example, privacy and confidentiality breach. Although significant progress has been made on securing biomedical data, most existing approaches yield long delays and cannot accommodate real-time responses. This paper proposes a novel fog-enabled privacy-preserving model called δ r sanitizer, which uses deep learning to improve the healthcare system. The proposed model is based on a Convolutional Neural Network with Bidirectional-LSTM and effectively performs Medical Entity Recognition. The experimental results show that δ r sanitizer outperforms the state-of-the-art models with 91.14% recall, 92.63% in precision, and 92% F1-score. The sanitization model shows 28.77% improved utility preservation as compared to the state-of-the-art.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA