Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Cell Biol ; 149(1): 125-40, 2000 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-10747092

RESUMO

Protein phosphatase type I (PP1), encoded by the single essential gene GLC7 in Saccharomyces cerevisiae, functions in diverse cellular processes. To identify in vivo subcellular location(s) where these processes take place, we used a functional green fluorescent protein (GFP)-Glc7p fusion protein. Time-lapse fluorescence microscopy revealed GFP-Glc7p localizes predominantly in the nucleus throughout the mitotic cell cycle, with the highest concentrations in the nucleolus. GFP-Glc7p was also observed in a ring at the bud neck, which was dependent upon functional septins. Supporting a role for Glc7p in bud site selection, a glc7-129 mutant displayed a random budding pattern. In alpha-factor treated cells, GFP-Glc7p was located at the base of mating projections, again in a septin-dependent manner. At the start of anaphase, GFP-Glc7p accumulated at the spindle pole bodies and remained there until cytokinesis. After anaphase, GFP-Glc7p became concentrated in a ring that colocalized with the actomyosin ring. A GFP-Glc7-129 fusion was defective in localizing to the bud neck and SPBs. Together, these results identify sites of Glc7p function and suggest Glc7p activity is regulated through dynamic changes in its location.


Assuntos
Divisão Celular , Proteínas do Citoesqueleto , Proteínas Fúngicas/metabolismo , Mitose , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Actomiosina/metabolismo , Anáfase/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Divisão Celular/efeitos dos fármacos , Nucléolo Celular/enzimologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/enzimologia , Técnica Indireta de Fluorescência para Anticorpo , Proteínas Fúngicas/genética , Genes Fúngicos/genética , Genes Fúngicos/fisiologia , Fator de Acasalamento , Mitose/efeitos dos fármacos , Mutação/genética , Peptídeos/farmacologia , Fosfoproteínas Fosfatases/genética , Profilinas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/enzimologia , Fatores de Tempo
2.
J Cell Biol ; 125(1): 143-58, 1994 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-8138567

RESUMO

JNM1, a novel gene on chromosome XIII in the yeast Saccharomyces cerevisiae, is required for proper nuclear migration. jnm1 null mutants have a temperature-dependent defect in nuclear migration and an accompanying alteration in astral microtubules. At 30 degrees C, a significant proportion of the mitotic spindles is not properly located at the neck between the mother cell and the bud. This defect is more severe at low temperature. At 11 degrees C, 60% of the cells accumulate with large buds, most of which have two DAPI staining regions in the mother cell. Although mitosis is delayed and nuclear migration is defective in jnm1 mutant, we rarely observe more than two nuclei in a cell, nor do we frequently observe anuclear cells. No loss of viability is observed at 11 degrees C and cells continue to grow exponentially with increased doubling time. At low temperature the large budded cells of jnm1 mutants exhibit extremely long astral microtubules that often wind around the periphery of the cell. jnm1 mutants are not defective in chromosome segregation during mitosis, as assayed by the rate of chromosome loss, or nuclear migration during conjugation, as assayed by the rate of mating and cytoduction. The phenotype of a jnm1 mutant is strikingly similar to that for mutants in the dynein heavy chain gene (Eshel, D., L. A. Urrestarazu, S. Vissers, J.-C. Jauniaux, J. C. van Vliet-Reedijk, R. J. Plants, and I. R. Gibbons. 1993. Proc. Natl. Acad. Sci. USA. 90:11172-11176; Li, Y. Y., E. Yeh, T. Hays, and K. Bloom. 1993. Proc. Natl. Acad. Sci. USA. 90:10096-10100). The JNM1 gene product is predicted to encode a 44-kD protein containing three coiled coil domains. A JNM1:lacZ gene fusion is able to complement the cold sensitivity and microtubule phenotype of a jnm1 deletion strain. This hybrid protein localizes to a single spot in the cell, most often near the spindle pole body in unbudded cells and in the bud in large budded cells. Together these results point to a specific role for Jnm1p in spindle migration, possibly as a subunit or accessory protein for yeast dynein.


Assuntos
Núcleo Celular/fisiologia , Proteínas Fúngicas/fisiologia , Genes Fúngicos , Mitose , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fuso Acromático/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Mapeamento Cromossômico , Clonagem Molecular , Primers do DNA/química , Proteínas Associadas aos Microtúbulos , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Temperatura
3.
J Cell Biol ; 131(6 Pt 1): 1483-93, 1995 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8522605

RESUMO

Many actin-binding proteins affect filament assembly in vitro and localize with actin in vivo, but how their molecular actions contribute to filament assembly in vivo is not understood well. We report here that capping protein (CP) and fimbrin are both important for actin filament assembly in vivo in Saccharomyces cerevisiae, based on finding decreased actin filament assembly in CP and fimbrin mutants. We have also identified mutations in actin that enhance the CP phenotype and find that those mutants also have decreased actin filament assembly in vivo. In vitro, actin purified from some of these mutants is defective in polymerization or binding fimbrin. These findings support the conclusion that CP acts to stabilize actin filaments in vivo. This conclusion is particularly remarkable because it is the opposite of the conclusion drawn from recent studies in Dictyostelium (Hug, C., P.Y. Jay, I. Reddy, J.G. McNally, P.C. Bridgman, E.L. Elson, and J.A. Cooper. 1995. Cell. 81:591-600). In addition, we find that the unpolymerized pool of actin in yeast is very small relative to that found in higher cells, which suggests that actin filament assembly is less dynamic in yeast than higher cells.


Assuntos
Actinas/metabolismo , Proteínas de Transporte/fisiologia , Proteínas do Citoesqueleto , Glicoproteínas de Membrana/fisiologia , Proteínas de Membrana , Proteínas dos Microfilamentos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Actinas/genética , Actinas/ultraestrutura , Alelos , Animais , Dictyostelium/fisiologia , Proteínas Fúngicas/fisiologia , Mutação/fisiologia , Plasmídeos , Conformação Proteica , Saccharomyces cerevisiae/química
4.
J Cell Biol ; 155(5): 797-808, 2001 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-11724821

RESUMO

Sporulation of Saccharomyces cerevisiae is a developmental process in which a single cell is converted into four haploid spores. GIP1, encoding a developmentally regulated protein phosphatase 1 interacting protein, is required for spore formation. Here we show that GIP1 and the protein phosphatase 1 encoded by GLC7 play essential roles in spore development. The gip1Delta mutant undergoes meiosis and prospore membrane formation normally, but is specifically defective in spore wall synthesis. We demonstrate that in wild-type cells, distinct layers of the spore wall are deposited in a specific temporal order, and that gip1Delta cells display a discrete arrest at the onset of spore wall deposition. Localization studies revealed that Gip1p and Glc7p colocalize with the septins in structures underlying the growing prospore membranes. Interestingly, in the gip1Delta mutant, not only is Glc7p localization altered, but septins are also delocalized. Similar phenotypes were observed in a glc7-136 mutant, which expresses a Glc7p defective in interacting with Gip1p. These results indicate that a Gip1p-Glc7p phosphatase complex is required for proper septin organization and initiation of spore wall formation during sporulation.


Assuntos
Proteínas de Transporte/metabolismo , Parede Celular/metabolismo , Proteínas Fúngicas/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Esporos Fúngicos/metabolismo , Proteínas de Transporte/genética , Parede Celular/química , Proteínas Fúngicas/genética , Meiose/fisiologia , Microscopia de Fluorescência , Fosfoproteínas Fosfatases/genética , Proteína Fosfatase 1 , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/fisiologia , Esporos Fúngicos/ultraestrutura , Fatores de Tempo
5.
Science ; 235(4793): 1218-21, 1987 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-3547648

RESUMO

The yeast Saccharomyces cerevisiae contains two functional homologues of the ras oncogene family, RAS1 and RAS2. These genes are required for growth, and all evidence indicates that this essential function is the activation of adenylate cyclase. In contrast, ras in mammalian cells does not appear to influence adenylate cyclase activity. To clarify the relation between ras function in yeast and in higher eukaryotes, and the role played by yeast RAS in growth control, it is necessary to identify functions acting upstream of RAS in the adenylate cyclase pathway. The evidence presented here indicates that CDC25, identified by conditional cell cycle arrest mutations, encodes such an upstream function.


Assuntos
Adenilil Ciclases/metabolismo , Oncogenes , Saccharomyces cerevisiae/genética , Ativação Enzimática , Genes Dominantes , Haploidia , Mutação , Fenótipo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/fisiologia , Esporos , Supressão Genética
6.
Science ; 228(4696): 179-84, 1985 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-3883495

RESUMO

Activated versions of ras genes have been found in various types of malignant tumors. The normal versions of these genes are found in organisms as diverse as mammals and yeasts. Yeast cells that lack their functional ras genes, RASSC-1 and RASSC-2, are ordinarily nonviable. They have now been shown to remain viable if they carry a mammalian rasH gene. In addition, yeast-mammalian hybrid genes and a deletion mutant yeast RASSC-1 gene were shown to induce morphologic transformation of mouse NIH 3T3 cells when the genes had a point mutation analogous to one that increases the transforming activity of mammalian ras genes. The results establish the functional relevance of the yeast system to the genetics and biochemistry of cellular transformation induced by mammalian ras genes.


Assuntos
Proteínas de Neoplasias/genética , Oncogenes , Saccharomyces cerevisiae/genética , Animais , Transformação Celular Neoplásica/metabolismo , DNA Recombinante/metabolismo , Drosophila/genética , Camundongos , Proteínas de Neoplasias/metabolismo , Hibridização de Ácido Nucleico , Plasmídeos
7.
Mol Cell Biol ; 11(2): 1069-79, 1991 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-1990267

RESUMO

The RAP1 gene of Saccharomyces cerevisiae encodes an abundant DNA-binding protein, also known as GRF1, TBA, or TUF, that binds to many sites in the yeast genome in vitro. These sites define a consensus sequence, [sequence: see text], and deletion analyses of genes that contain this sequence have implicated the involvement of RAP1 in numerous cellular processes, including gene activation and repression. The MAT alpha locus, required for determination of the alpha cell type in yeast cells, contains a RAP1 binding site; this site coincides with the MAT alpha upstream activating sequence (UAS) and is necessary for expression of the two genes encoded by the MAT alpha locus, MAT alpha 1 and MAT alpha 2. We show that the MAT alpha UAS is sufficient to activate transcription from a promoterless gene fusion of the yeast CYC1 upstream region and the lacZ gene. Constructs containing only the MAT alpha UAS generated elevated levels of beta-galactosidase activity which were indistinguishable from those of constructs containing the entire MAT alpha intergenic region. Further, the MAT alpha UAS has an intrinsic polarity of transcriptional activation; transcription of CYC1-lacZ was six- to sevenfold higher when the UAS was oriented in the direction normally associated with MAT alpha 2 transcription. Point mutations in the MAT alpha UAS that reduce MAT alpha expression three- to fivefold resulted in a bi-mating phenotype, while a mutation that reduced MAT alpha expression still further resulted in an a-mating phenotype. We isolated plasmids from a high-copy-number yeast library that suppressed the bi-mating defect of point mutations in the MAT alpha UAS, and the most effective dosage suppressor contained the gene encoding RAP1. A temperature-sensitive rap1 mutant bi-mates at the semipermissive temperature. Double mutants at rap1 and mat alpha mate exclusively as a cells, at all temperatures, and do not express detectable levels of MAT alpha RNA. These data provide evidence that the RAP1 gene product functions at the MAT alpha UAS in vivo.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Peptídeos/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição , Sequência de Bases , Sítios de Ligação , Cruzamentos Genéticos , Proteínas Fúngicas/metabolismo , Genótipo , Íntrons , Fator de Acasalamento , Dados de Sequência Molecular , Sondas de Oligonucleotídeos , Feromônios/metabolismo , Plasmídeos , Ativação Transcricional
8.
Mol Cell Biol ; 7(8): 2653-63, 1987 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-2823100

RESUMO

Mutations in the SRA1 or SRA3 gene eliminate the requirement for either RAS gene (RAS1 or RAS2) in Saccharomyces cerevisiae. We cloned SRA1 and SRA3 and determined their DNA sequences. SRA1 encodes the regulatory subunit of the cyclic AMP (cAMP)-dependent protein kinase and therefore is identical to REG1 and BCY1. This gene is not essential, but its deletion confers many traits: reduction of glycogen accumulation, temperature sensitivity, reduced growth rate on maltose and sucrose, inability to grow on galactose and nonfermentable carbon sources, and nitrogen starvation intolerance. SRA3 is homologous to protein kinases that phosphorylate serine and threonine and likely encodes the catalytic subunit of the cAMP-dependent protein kinase. The wild-type SRA3 gene either triplicated in the chromosome or on episomal, low-copy plasmids behaves like spontaneous dominant SRA3 mutations by suppressing ras2-530 (RAS2::LEU2 disruption), cdc25, and cdc35 mutations. These findings indicate that the yeast RAS genes are dispensable if there is constitutive cAMP-dependent protein kinase activity.


Assuntos
Genes Fúngicos , Genes , Proteínas Quinases/genética , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Enzimas de Restrição do DNA , Plasmídeos , Saccharomyces cerevisiae/enzimologia
9.
Mol Cell Biol ; 8(1): 505-10, 1988 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-2827010

RESUMO

sra5 mutations in Saccharomyces cerevisiae were previously shown to suppress the inefficient growth of ras2 strains on nonfermentable carbon sources and to result in deficient low-Km cyclic AMP (cAMP) phosphodiesterase activity. We have cloned SRA5 by complementation. It maps to the right arm of chromosome XV, tightly linked to PRT1, and its sequence matches the sequence of PDE2, encoding the low-Km cAMP phosphodiesterase. Disruptions of SRA5 allowed ras1 ras2 strains to grow either on rich media supplemented with cAMP or on minimal media without exogenous cAMP. sra5 strains failed to survive prolonged nitrogen starvation in the presence of exogenous cAMP.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/genética , Genes Fúngicos , Saccharomyces cerevisiae/genética , Mapeamento Cromossômico , AMP Cíclico/fisiologia , Proteínas de Ligação ao GTP/genética , Genes , Teste de Complementação Genética , Mutação , Nitrogênio/metabolismo , Fenótipo , Saccharomyces cerevisiae/enzimologia
10.
Mol Cell Biol ; 16(6): 2922-31, 1996 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-8649403

RESUMO

The GLC7 gene of Saccharomyces cerevisiae encodes the catalytic subunit of type 1 protein phosphatase (PP1) and is essential for cell growth. We have isolated a previously uncharacterized gene, REG2, on the basis of its ability to interact with Glc7p in the two-hybrid system. Reg2p interacts with Glc7p in vivo, and epitope-tagged derivatives of Reg2p and Glc7p coimmunoprecipitate from cell extracts. The predicted protein product of the REG2 gene is similar to Reg1p, a protein believed to direct PP1 activity in the glucose repression pathway. Mutants with a deletion of reg1 display a mild slow-growth defect, while reg2 mutants exhibit a wild-type phenotype. However, mutants with deletions of both reg1 and reg2 exhibit a severe growth defect. Overexpression of REG2 complements the slow-growth defect of a reg1 mutant but does not complement defects in glycogen accumulation or glucose repression, two traits also associated with a reg1 deletion. These results indicate that REG1 has a unique role in the glucose repression pathway but acts together with REG2 to regulate some as yet uncharacterized function important for growth. The growth defect of a reg1 reg2 double mutant is alleviated by a loss-of-function mutation in the SNF1-encoded protein kinase. The snf1 mutation also suppresses the glucose repression defects of reg1. Together, our data are consistent with a model in which Reg1p and Reg2p control the activity of PP1 toward substrates that are phosphorylated by the Snf1p kinase.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Fosfoproteínas Fosfatases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Divisão Celular/genética , Divisão Celular/fisiologia , Primers do DNA/genética , DNA Fúngico/genética , Glucose/metabolismo , Glicogênio/metabolismo , Dados de Sequência Molecular , Mutação , Fenótipo , Fosfoproteínas Fosfatases/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Homologia de Sequência de Aminoácidos
11.
Mol Cell Biol ; 5(8): 1878-86, 1985 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-3915783

RESUMO

In the yeast Saccharomyces cerevisiae, haploid cells occur in one of the two cell types, a or alpha. The allele present at the mating type (MAT) locus plays a prominent role in the control of cell type expression. An important consequence of the elaboration of cell type is the ability of cells of one mating type to conjugate with cells of the opposite mating type, resulting in yet a third cell type, an a/alpha diploid. Numerous genes that are involved in the expression of cell type and the conjugation process have been identified by standard genetic techniques. Molecular analysis has shown that expression of several of these genes is subject to control on the transcriptional level by the MAT locus. Two genes, STE7 and STE11, are required for mating in both haploid cell types; ste7 and ste11 mutants are sterile. We report here the molecular cloning of STE7 and STE11 genes and show that expression of these genes is not regulated transcriptionally by the MAT locus. We also have genetically mapped the STE11 gene to chromosome XII, 40 centimorgans from ura4.


Assuntos
Clonagem Molecular , Genes Fúngicos , Genes Fúngicos Tipo Acasalamento , Saccharomyces cerevisiae/genética , Alelos , Cruzamentos Genéticos , Diploide , Genótipo , Haploidia , Mutação , Plasmídeos
12.
Mol Cell Biol ; 15(7): 3767-76, 1995 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-7791784

RESUMO

The Saccharomyces cerevisiae GLC7 gene encodes the catalytic subunit of type 1 protein phosphatase (PP1) and is required for cell growth. A cold-sensitive glc7 mutant (glc7Y170) arrests in G2/M but remains viable at the restrictive temperature. In an effort to identify additional gene products that function in concert with PP1 to regulate growth, we isolated a mutation (gpp1) that exacerbated the growth phenotype of the glc7Y170 mutation, resulting in rapid death of the double mutant at the nonpermissive temperature. We identified an additional gene, EGP1, as an extra-copy suppressor of the glc7Y170 gpp1-1 double mutant. The nucleotide sequence of EGP1 predicts a leucine-rich repeat protein that is similar to Sds22, a protein from the fission yeast Schizosaccharomyces pombe that positively modulates PP1. EGP1 is essential for cell growth but becomes dispensable upon overexpression of the GLC7 gene. Egp1 and PP1 directly interact, as assayed by coimmunoprecipitation. These results suggest that Egp1 functions as a positive modulator of PP1 in the growth control of S. cerevisiae.


Assuntos
Genes Fúngicos/genética , Genes Reguladores/genética , Proteínas Nucleares , Fosfoproteínas Fosfatases/metabolismo , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe , Sequência de Aminoácidos , Sequência de Bases , Ciclo Celular/genética , Proteínas de Ciclo Celular , Núcleo Celular/patologia , Clonagem Molecular , Imunofluorescência , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Regulação Fúngica da Expressão Gênica , Genes Letais/genética , Microtúbulos/patologia , Dados de Sequência Molecular , Mutagênese , Fosfoproteínas Fosfatases/isolamento & purificação , Testes de Precipitina , Proteínas Repressoras/isolamento & purificação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
13.
Mol Cell Biol ; 14(2): 896-905, 1994 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-8289829

RESUMO

Loss-of-function gac1 mutants of Saccharomyces cerevisiae fail to accumulate normal levels of glycogen because of low glycogen synthase activity. Increased dosage of GAC1 results in increased activity of glycogen synthase and a corresponding hyperaccumulation of glycogen. The glycogen accumulation phenotype of gac1 is similar to that of glc7-1, a type 1 protein phosphatase mutant. We have partially characterized the GAC1 gene product (Gac1p) and show that levels of Gac1p increase during growth with the same kinetics as glycogen accumulation. Gac1p is phosphorylated in vivo and is hyperphosphorylated in a glc7-1 mutant. Gac1p and the type 1 protein phosphatase directly interact in vitro, as assayed by coimmunoprecipitation, and in vivo, as determined by the dihybrid assay described elsewhere (S. Fields and O.-k. Song, Nature [London] 340:245-246, 1989). The interaction between Gac1p and the glc7-1-encoded form of the type 1 protein phosphatase is defective, as assayed by either immunoprecipitation or the dihybrid assay. Increased dosage of GAC1 partially suppresses the glycogen defect of glc7-1. Collectively, our data support the hypotheses that GAC1 encodes a regulatory subunit of type 1 protein phosphatase and that the glycogen accumulation defect of glc7-1 is due at least in part to the inability of the mutant phosphatase to interact with its regulatory subunit.


Assuntos
Proteínas Fúngicas/metabolismo , Mutação , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Sequência de Bases , Cruzamentos Genéticos , Primers do DNA , Proteínas Fúngicas/biossíntese , Expressão Gênica , Isoenzimas/biossíntese , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Dados de Sequência Molecular , Fosfoproteínas Fosfatases/biossíntese , Fosfoproteínas Fosfatases/genética , Plasmídeos , Reação em Cadeia da Polimerase , Proteína Fosfatase 1 , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/metabolismo , beta-Galactosidase/biossíntese , beta-Galactosidase/metabolismo
14.
Mol Cell Biol ; 4(11): 2298-305, 1984 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-6392849

RESUMO

The cellular homologs of the Harvey and Kirsten murine sarcoma virus oncogenes comprise a multigene family, ras, that displays striking evolutionary conservation. We recently reported [DeFeo-Jones et al., Nature (London) 306:707-709, 1983] the cloning of two ras homologs from the yeast Saccharomyces cerevisiae. The nucleotide sequences of these genes predict polypeptides that show remarkable homology to p21, the mammalian ras gene product. We have also found proteins in yeast lysates with serological cross-reactivity to p21 (Papageorge et al., Mol. Cell. Biol. 4:23-29, 1984). In this work, we explored the relationship between the immunoprecipitated proteins and the yeast ras genes. We show that both ras genes are expressed in the wild-type cell. Furthermore, we demonstrate by in vitro translation of hybrid-selected RASsc1 mRNA and immunoprecipitation of the translation products that the cloned RASsc1 gene encodes the proteins immunoprecipitated from yeast lysates by anti-p21 monoclonal antibody. Finally, we used anti-p21 monoclonal antibodies to detect a guanine nucleotide binding activity in yeast lysates. The structural and biochemical homologies between ras gene products of S. cerevisiae and mammalian cells suggest that information obtained by genetic analysis of ras function in a lower eucaryote should be applicable to higher organisms as well.


Assuntos
Oncogenes , RNA Fúngico/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Clonagem Molecular , Proteínas Fúngicas/genética , Genes Fúngicos , Nucleotídeos de Guanina/metabolismo , Biossíntese de Proteínas , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
15.
Mol Cell Biol ; 11(6): 3369-73, 1991 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-1645449

RESUMO

The Saccharomyces cerevisiae SRK1 gene, when expressed on a low-copy shuttle vector, partially suppresses the phenotype associated with elevated levels of cyclic AMP-dependent protein kinase activity and suppresses the temperature-sensitive cell cycle arrest of the ins1 mutant. SRK1 is located on chromosome IV, 3 centimorgans from gcn2. A mutant carrying a deletion mutation in srk1 is viable. SRK1 encodes a 140-kDa protein with homology to the dis3+ protein from Schizosaccharomyces pombe. The ability of SRK1 to alleviate partially the defects caused by high levels of cyclic AMP-dependent protein kinase and the similarity of its encoded protein to dis3+ suggest that SRK1 may have a role in protein phosphatase function.


Assuntos
Genes Fúngicos , Genes Supressores , Fosfoproteínas Fosfatases/metabolismo , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , DNA Fúngico/genética , DNA Fúngico/isolamento & purificação , Vetores Genéticos , Dados de Sequência Molecular , Fases de Leitura Aberta , Plasmídeos , Mapeamento por Restrição , Saccharomyces cerevisiae/enzimologia , Homologia de Sequência do Ácido Nucleico
17.
Genetics ; 124(4): 797-806, 1990 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-2157625

RESUMO

The CDC25 gene from Saccharomyces cerevisiae is an essential component of the RAS-adenylate cyclase pathway. Genetic and biochemical evidence has led to the proposal that the gene product may act upstream of RAS, possibly as a guanine nucleotide exchange factor. We report here the cloning, sequencing and characterization of four mutations in the CDC25 gene. All four are missense mutations which reside within the carboxy-terminal quarter of the single open reading frame found within the gene. Three of the four are missense mutations in the same amino acid codon. A search of protein data bases reveals that the carboxy terminus of the putative CDC25 gene product is similar to that of LTE1, a gene required for growth at low temperature and SCD25, a suppressor of cdc25. Taken together these data indicate that the carboxy terminus of CDC25 plays a critical role in the function of the CDC25 gene product and that other proteins, such as LTE1 or SCD25, may have related activities.


Assuntos
Proteínas de Ciclo Celular , AMP Cíclico/metabolismo , Proteínas Fúngicas/genética , Genes Fúngicos , Saccharomyces cerevisiae/genética , ras-GRF1 , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Alelos , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Genes ras , Dados de Sequência Molecular , Mutação , Fenótipo , Mapeamento por Restrição , Saccharomyces cerevisiae/metabolismo , Supressão Genética , Temperatura
18.
Genetics ; 143(1): 57-66, 1996 May.
Artigo em Inglês | MEDLINE | ID: mdl-8722762

RESUMO

Pho85, a protein kinase with significant homology to the cyclin-dependent kinase, Cdc28, has been shown to function in repression of transcription of acid phosphatase (APase, encoded by PHO5) in high phosphate (Pi) medium, as well as in regulation of the cell cycle at G1/S. We described several unique phenotypes associated with the deletion of the PHO85 gene including growth defects on a variety of carbon sources and hyperaccumulation of glycogen in rich medium high in Pi. Hyperaccumulation of glycogen in the pho85 strains is independent of other APase regulatory molecules and is not signaled through Snfl kinase. However, constitutive activation of cAPK suppresses the hyperaccumulation of glycogen in a pho85 mutant. Mutation of the type-1 protein phosphatase encoded by GLC7 only partially suppresses the glycogen phenotype of the pho85 mutant. Additionally, strains containing a deletion of the PHO85 gene show an increase in expression of GSY2. This work provides evidence that Pho85 has functions in addition to transcriptional regulation of APase and cell-cycle progression including the regulation of glycogen levels in the cell and may provide a link between the nutritional state of the cell and these growth related responses.


Assuntos
Quinases Ciclina-Dependentes/genética , Deleção de Genes , Genes Fúngicos , Glicogênio/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fosfatase Ácida/biossíntese , Fosfatase Ácida/genética , Meios de Cultura , Regulação Fúngica da Expressão Gênica , Genótipo , Heterozigoto , Mutagênese , Fosfatos/metabolismo , Plasmídeos , Proteínas Repressoras/genética , Mapeamento por Restrição , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transcrição Gênica
19.
Genetics ; 113(2): 247-64, 1986 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-3013722

RESUMO

Saccharomyces cerevisiae contains two members of the ras gene family. Strains with disruptions of the RAS2 gene fail to grow efficiently on nonfermentable carbon sources. This growth defect can be suppressed by extragenic mutations called sra. We have isolated 79 independent suppressor mutations, 68 of which have been assigned to one of five loci. Eleven additional dominant mutations have not been assigned to a specific locus. Some sra1 and SRA4 and all SRA3 mutations were RAS independent, allowing growth of yeast cells that lack a functional RAS gene. Mutations in sra1, SRA3, SRA4 and sra6 are linked to his6, ino1, met3 and ade6, respectively. Some sra mutants have pleiotropic phenotypes that affect glycogen accumulation, sporulation, viability, respiratory capacity and suppression of two cell-division-cycle mutations, cdc25 and cdc35. The proposed functions of many of the suppressor genes are consistent with the model in which RAS activates adenylate cyclase.


Assuntos
Genes Fúngicos , Mutação , Saccharomyces cerevisiae/genética , Supressão Genética , Adenilil Ciclases/genética , Alelos , Fermentação , Teste de Complementação Genética , Genótipo , Diester Fosfórico Hidrolases/genética , Plasmídeos , Proteínas Quinases/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Especificidade da Espécie
20.
Genetics ; 155(1): 69-83, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10790385

RESUMO

GLC7 encodes an essential serine/threonine protein type I phosphatase in Saccharomyces cerevisiae. Three other phosphatases (Ppz1p, Ppz2p, and Sal6p) share >59% identity in their catalytic region with Glc7p. ppz1 ppz2 null mutants have no apparent growth defect on rich media. However, null alleles of PPZ1 and PPZ2, in combination with mutant alleles of GLC7, confer a range of growth defects varying from slow growth to lethality. These results indicate that Glc7p, Ppz1p, and Ppz2p may have overlapping functions. To determine if this overlap extends to interaction with targeting subunits, Glc7p-binding proteins were tested for interaction in the two-hybrid system with the functional catalytic domain of Ppz1p. Ppz1p interacts strongly with a number of Glc7p regulatory subunits, including Glc8p, a protein that shares homology with mammalian PP1 inhibitor I2. Genetic data suggest that Glc8p positively affects both Glc7p and Ppz1p functions. Together our data suggest that Ppz1p and Ppz2p may have overlapping functions with Glc7p and that all three phosphatases may act through common regulatory proteins.


Assuntos
Proteínas Fúngicas/genética , Fosfoproteínas Fosfatases/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas de Transporte/genética , Domínio Catalítico , Proteínas do Citoesqueleto , Proteínas Fúngicas/metabolismo , Teste de Complementação Genética , Mutagênese , Fenótipo , Fosfoproteínas Fosfatases/metabolismo , Proteína Fosfatase 1 , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA