Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 515(7527): 376-8, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25409827

RESUMO

Theoretical models for the production of relativistic jets from active galactic nuclei predict that jet power arises from the spin and mass of the central supermassive black hole, as well as from the magnetic field near the event horizon. The physical mechanism underlying the contribution from the magnetic field is the torque exerted on the rotating black hole by the field amplified by the accreting material. If the squared magnetic field is proportional to the accretion rate, then there will be a correlation between jet power and accretion luminosity. There is evidence for such a correlation, but inadequate knowledge of the accretion luminosity of the limited and inhomogeneous samples used prevented a firm conclusion. Here we report an analysis of archival observations of a sample of blazars (quasars whose jets point towards Earth) that overcomes previous limitations. We find a clear correlation between jet power, as measured through the γ-ray luminosity, and accretion luminosity, as measured by the broad emission lines, with the jet power dominating the disk luminosity, in agreement with numerical simulations. This implies that the magnetic field threading the black hole horizon reaches the maximum value sustainable by the accreting matter.

2.
Astrophys J ; 526(2): L81-L84, 1999 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-10550283

RESUMO

Mrk 421 was observed for about 2 days with BeppoSAX in 1998 April as part of a worldwide multiwavelength campaign. A large, well-defined flare was observed in X-rays. The same flare was observed simultaneously at TeV energies by the Whipple Observatory gamma-ray telescope. These data provide (1) the first evidence that the X-ray and TeV intensities are well correlated on timescales of hours and (2) the first exactly simultaneous X-ray and TeV spectra. The results imply that the X-ray and TeV photons derive from the same region and from the same population of relativistic electrons. The physical parameters deduced from a homogeneous synchrotron self-Compton model for the spectral energy distribution yield electron cooling times close to the observed variability timescales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA