Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 8(8): 1204-8, 1125, 2012 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-22334368

RESUMO

The fabrication of a p-shell/n-core coaxial nanorod ZnO homojunction light-emitting diode by inexpensive solution method is demonstrated. The p-type conductivity of the ZnO shell arises from the incorporation of potassium while the n-type conductivity of the core is due to unintentional doping.


Assuntos
Nanotecnologia/métodos , Nanotubos/química , Óxido de Zinco/química , Semicondutores , Raios Ultravioleta
2.
Sci Rep ; 6: 36352, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27808272

RESUMO

In this study we report the existence of novel ultraviolet (UV) and blue emission in rare-earth based perovskite NdGaO3 (NGO) and the systematic quench of the NGO photoluminescence (PL) by Ce doping. Study of room temperature PL was performed in both single-crystal and polycrystalline NGO (substrates and pellets) respectively. Several NGO pellets were prepared with varying Ce concentration and their room temperature PL was studied using 325 nm laser. It was found that the PL intensity shows a systematic quench with increasing Ce concentration. XPS measurements indicated that nearly 50% of Ce atoms are in the 4+ state. The PL quench was attributed to the novel concept of super hydrogenic dopant (SHD)", where each Ce4+ ion contributes an electron which forms a super hydrogenic atom with an enhanced Bohr radius, due to the large dielectric constant of the host. Based on the critical Ce concentration for complete quenching this SHD radius was estimated to be within a range of 0.85 nm and 1.15 nm whereas the predicted theoretical value of SHD radius for NdGaO3 is ~1.01 nm.

3.
ACS Appl Mater Interfaces ; 7(8): 4737-43, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25650992

RESUMO

Vertically aligned ZnO nanorods were grown at 90 °C by both microwave synthesis and traditional heated water bath method on Si (100) substrate with a precoated ZnO nanoparticle seed layer. A detailed comparison in the morphology, defects, and optical properties of the ZnO nanorods grown by the two methods across the pH range of 10.07-10.9 for microwave synthesis and conventional heated water bath method was performed using scanning electron microscopy, photoluminescence, and X-ray photoelectron spectroscopy. The results show that the microwave route leads to more uniformly distributed nanorods with a lower density of native defects of oxygen interstitials and zinc vacancies. The microwave synthesis presents a promising new approach of fabricating metal oxide nanostructures and devices toward green applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA