RESUMO
Controlled mechanical ventilation (CMV) is associated with the development of diaphragm atrophy and contractile dysfunction, and respiratory muscle weakness is thought to contribute significantly to delayed weaning of patients. Therefore, therapeutic strategies for preventing these processes may have clinical benefit. The aim of the current study was to investigate the role of the Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in CMV-mediated diaphragm wasting and weakness in rats. CMV-induced diaphragm atrophy and contractile dysfunction coincided with marked increases in STAT3 phosphorylation on both tyrosine 705 (Tyr705) and serine 727 (Ser727). STAT3 activation was accompanied by its translocation into mitochondria within diaphragm muscle and mitochondrial dysfunction. Inhibition of JAK signaling during CMV prevented phosphorylation of both target sites on STAT3, eliminated the accumulation of phosphorylated STAT3 within the mitochondria, and reversed the pathologic alterations in mitochondrial function, reduced oxidative stress in the diaphragm, and maintained normal diaphragm contractility. In addition, JAK inhibition during CMV blunted the activation of key proteolytic pathways in the diaphragm, as well as diaphragm atrophy. These findings implicate JAK/STAT3 signaling in the development of diaphragm muscle atrophy and dysfunction during CMV and suggest that the delayed extubation times associated with CMV can be prevented by inhibition of Janus kinase signaling.-Smith, I. J., Godinez, G. L., Singh, B. K., McCaughey, K. M., Alcantara, R. R., Gururaja, T., Ho, M. S., Nguyen, H. N., Friera, A. M., White, K. A., McLaughlin, J. R., Hansen, D., Romero, J. M., Baltgalvis, K. A., Claypool, M. D., Li, W., Lang, W., Yam, G. C., Gelman, M. S., Ding, R., Yung, S. L., Creger, D. P., Chen, Y., Singh, R., Smuder, A. J., Wiggs, M. P., Kwon, O.-S., Sollanek, K. J., Powers, S. K., Masuda, E. S., Taylor, V. C., Payan, D. G., Kinoshita, T., Kinsella, T. M. Inhibition of Janus kinase signaling during controlled mechanical ventilation prevents ventilation-induced diaphragm dysfunction.
Assuntos
Diafragma/metabolismo , Janus Quinases/metabolismo , Respiração Artificial/efeitos adversos , Transdução de Sinais/fisiologia , Animais , Interleucina-6/metabolismo , Masculino , Mitocôndrias/metabolismo , Debilidade Muscular/metabolismo , Atrofia Muscular/metabolismo , Estresse Oxidativo/fisiologia , Fosforilação/fisiologia , Proteólise , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo , Serina/metabolismo , Tirosina/metabolismoRESUMO
BACKGROUND: Urogenital abnormalities are among the most common of all human birth defects. In developmental toxicity studies with the Syk kinase inhibitor R788, a spectrum of findings, including renal agenesis, were observed. R788 has also been found to inhibit the receptor tyrosine kinase Ret. Ret kinase is known to be an essential component in the signaling pathway required for renal organogenesis and ureteric duct formation. Previously known is that mutant mice without the c-ret gene, develop urogenital malformations including renal agenesis. METHODS: In GLP developmental toxicity studies, gravid rabbits were treated orally with R788 at doses of 0, 10, 22, and 50 mg/kg/day (gestation days 7-19) and gravid rats received 0, 5, 12.5, and 25 mg/kg/day (gestation days 6-17) by the same route. The activity of R406 against Ret kinase was assessed in biochemical and cell-based assays. RESULTS: A dose-dependent increase in malformations, including renal and ureteric agenesis and a specific major vessel anomaly, retroesophageal right subclavian artery, was observed in both the rat and rabbit. R788 proved to be a potent inhibitor of Ret kinase. CONCLUSIONS: R788 promoted a spectrum of developmental toxicity, including renal and ureteric agenesis and a specific major vessel abnormality, retroesophageal right subclavian artery, in two different species. These effects are likely the result of inhibition of Ret kinase given its importance in the normal ontogeny of the urogenital and cardiovascular systems across species.
Assuntos
Anormalidades Induzidas por Medicamentos/patologia , Oxazinas/toxicidade , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores , Piridinas/toxicidade , Testes de Toxicidade , Aminopiridinas , Animais , Células Cultivadas , Desenvolvimento Embrionário/efeitos dos fármacos , Inibidores Enzimáticos/toxicidade , Feminino , Infertilidade/induzido quimicamente , Infertilidade/epidemiologia , Masculino , Morfolinas , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/patologia , Pirimidinas , Coelhos , Ratos , Reprodução/efeitos dos fármacos , Testes de Toxicidade/métodosRESUMO
To identify novel components of the TCR signaling pathway, a large-scale retroviral-based functional screen was performed using CD69 expression as a marker for T cell activation. In addition to known regulators, two truncated forms of p21-activated kinase 2 (PAK2), PAK2DeltaL(1-224) and PAK2DeltaS(1-113), both lacking the kinase domain, were isolated in the T cell screen. The PAK2 truncation, PAK2DeltaL, blocked Ag receptor-induced NFAT activation and TCR-mediated calcium flux in Jurkat T cells. However, it had minimal effect on PMA/ionomycin-induced CD69 up-regulation in Jurkat cells, on anti-IgM-mediated CD69 up-regulation in B cells, or on the migratory responses of resting T cells to chemoattractants. We show that PAK2 kinase activity is increased in response to TCR stimulation. Furthermore, a full-length kinase-inactive form of PAK2 blocked both TCR-induced CD69 up-regulation and NFAT activity in Jurkat cells, demonstrating that kinase activity is required for PAK2 function downstream of the TCR. We also generated a GFP-fused PAK2 truncation lacking the Cdc42/Rac interactive binding region domain, GFP-PAK2(83-149). We show that this construct binds directly to the kinase domain of PAK2 and inhibits anti-TCR-stimulated T cell activation. Finally, we demonstrate that, in primary T cells, dominant-negative PAK2 prevented anti-CD3/CD28-induced IL-2 production, and TCR-induced CD40 ligand expression, both key functions of activated T cells. Taken together, these results suggest a novel role for PAK2 as a positive regulator of T cell activation.