RESUMO
BACKGROUND: Respiratory viral infections are major drivers of chronic obstructive pulmonary disease (COPD) exacerbations. Interferon-ß is naturally produced in response to viral infection, limiting replication. This exploratory study aimed to demonstrate proof-of-mechanism, and evaluate the efficacy and safety of inhaled recombinant interferon-ß1a (SNG001) in COPD. Part 1 assessed the effects of SNG001 on induced sputum antiviral interferon-stimulated gene expression, sputum differential cell count, and respiratory function. Part 2 compared SNG001 and placebo on clinical efficacy, sputum and serum biomarkers, and viral clearance. METHODS: In Part 1, patients (N = 13) with stable COPD were randomised 4:1 to SNG001 or placebo once-daily for three days. In Part 2, patients (N = 109) with worsening symptoms and a positive respiratory viral test were randomised 1:1 to SNG001 or placebo once-daily for 14 days in two Groups: A (no moderate exacerbation); B (moderate COPD exacerbation [i.e., acute worsening of respiratory symptoms treated with antibiotics and/or oral corticosteroids]). RESULTS: In Part 1, SNG001 upregulated sputum interferon gene expression. In Part 2, there were minimal SNG001-placebo differences in the efficacy endpoints; however, whereas gene expression was initially upregulated by viral infection, then declined on placebo, levels were maintained with SNG001. Furthermore, the proportion of patients with detectable rhinovirus (the most common virus) on Day 7 was lower with SNG001. In Group B, serum C-reactive protein and the proportion of patients with purulent sputum increased with placebo (suggesting bacterial infection), but not with SNG001. The overall adverse event incidence was similar with both treatments. CONCLUSIONS: Overall, SNG001 was well-tolerated in patients with COPD, and upregulated lung antiviral defences to accelerate viral clearance. These findings warrant further investigation in a larger study. TRIAL REGISTRATION: EU clinical trials register (2017-003679-75), 6 October 2017.
Assuntos
Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/virologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Administração por Inalação , Método Duplo-Cego , Nebulizadores e Vaporizadores , Escarro/virologia , Escarro/metabolismo , Resultado do Tratamento , Antivirais/administração & dosagem , Antivirais/efeitos adversos , Progressão da Doença , Interferon beta/administração & dosagemRESUMO
BACKGROUND: Effective therapeutics given early to high-risk ambulatory patients with coronavirus disease 2019 (COVID-19) could improve outcomes and reduce overall healthcare burden. However, conducting site visits in non-hospitalised patients, who should remain isolated, is problematic. AIM: To evaluate the feasibility of a purely remote (virtual) study in non-hospitalised patients with COVID-19; and the efficacy and safety of nebulised recombinant interferon-ß1a (SNG001) in this setting. DESIGN & SETTING: Randomised, double-blind, parallel-group study, which was conducted remotely. METHOD: Eligible patients aged ≥65 years (or ≥50 years with risk factors) with COVID-19 and not requiring hospital admission were recruited remotely. They were randomised to SNG001 or placebo once-daily via nebuliser for 14 days. The main outcomes were assessments of feasibility and safety, which were all conducted remotely. RESULTS: Of 114 patients treated, 111 (97.4%) completed 28 days of follow-up. Overall compliance to study medication was high, with ≥13 doses taken by 89.7% and 92.9% of treated patients in the placebo and SNG001 groups, respectively. Over the course of the study, only two patients were hospitalised, both in the placebo group; otherwise there were no notable differences between treatments for the efficacy parameters. No patients withdrew owing to an adverse event, and a similar proportion of patients experienced on-treatment adverse events in the two treatment groups (64.3% and 67.2% with SNG001 and placebo, respectively); most were mild or moderate and not treatment-related. CONCLUSION: This study demonstrated that it is feasible to conduct a purely virtual study in community-based patients with COVID-19, when the study included detailed daily assessments and with medication administered via nebuliser.
RESUMO
Background: Despite the availability of vaccines and therapies, patients are being hospitalised with coronavirus disease 2019 (COVID-19). Interferon (IFN)-ß is a naturally occurring protein that stimulates host immune responses against most viruses, including severe acute respiratory syndrome coronavirus 2. SNG001 is a recombinant IFN-ß1a formulation delivered to the lungs via nebuliser. SPRINTER assessed the efficacy and safety of SNG001 in adults hospitalised due to COVID-19 who required oxygen via nasal prongs or mask. Methods: Patients were randomised double-blind to SNG001 (n=309) or placebo (n=314) once daily for 14â days plus standard of care (SoC). The primary objective was to evaluate recovery after administration of SNG001 versus placebo, in terms of times to hospital discharge and recovery to no limitation of activity. Key secondary end-points were progression to severe disease or death, progression to intubation or death and death. Results: Median time to hospital discharge was 7.0 and 8.0â days with SNG001 and placebo, respectively (hazard ratio (HR) 1.06 (95% CI 0.89-1.27); p=0.51); time to recovery was 25.0â days in both groups (HR 1.02 (95% CI 0.81-1.28); p=0.89). There were no significant SNG001-placebo differences for the key secondary end-points, with a 25.7% relative risk reduction in progression to severe disease or death (10.7% and 14.4%, respectively; OR 0.71 (95% CI 0.44-1.15); p=0.161). Serious adverse events were reported by 12.6% and 18.2% patients with SNG001 and placebo, respectively. Conclusions: Although the primary objective of the study was not met, SNG001 had a favourable safety profile, and the key secondary end-points analysis suggested that SNG001 may have prevented progression to severe disease.
RESUMO
BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection carries a substantial risk of severe and prolonged illness; treatment options are currently limited. We assessed the efficacy and safety of inhaled nebulised interferon beta-1a (SNG001) for the treatment of patients admitted to hospital with COVID-19. METHODS: We did a randomised, double-blind, placebo-controlled, phase 2 pilot trial at nine UK sites. Adults aged 18 years or older and admitted to hospital with COVID-19 symptoms, with a positive RT-PCR or point-of-care test, or both, were randomly assigned (1:1) to receive SNG001 (6 MIU) or placebo by inhalation via a mouthpiece daily for 14 days. The primary outcome was the change in clinical condition on the WHO Ordinal Scale for Clinical Improvement (OSCI) during the dosing period in the intention-to-treat population (all randomised patients who received at least one dose of the study drug). The OSCI is a 9-point scale, where 0 corresponds to no infection and 8 corresponds to death. Multiple analyses were done to identify the most suitable statistical method for future clinical trials. Safety was assessed by monitoring adverse events for 28 days. This trial is registered with Clinicaltrialsregister.eu (2020-001023-14) and ClinicalTrials.gov (NCT04385095); the pilot trial of inpatients with COVID-19 is now completed. FINDINGS: Between March 30 and May 30, 2020, 101 patients were randomly assigned to SNG001 (n=50) or placebo (n=51). 48 received SNG001 and 50 received placebo and were included in the intention-to-treat population. 66 (67%) patients required oxygen supplementation at baseline: 29 in the placebo group and 37 in the SNG001 group. Patients receiving SNG001 had greater odds of improvement on the OSCI scale (odds ratio 2·32 [95% CI 1·07-5·04]; p=0·033) on day 15 or 16 and were more likely than those receiving placebo to recover to an OSCI score of 1 (no limitation of activities) during treatment (hazard ratio 2·19 [95% CI 1·03-4·69]; p=0·043). SNG001 was well tolerated. The most frequently reported treatment-emergent adverse event was headache (seven [15%] patients in the SNG001 group and five [10%] in the placebo group). There were three deaths in the placebo group and none in the SNG001 group. INTERPRETATION: Patients who received SNG001 had greater odds of improvement and recovered more rapidly from SARS-CoV-2 infection than patients who received placebo, providing a strong rationale for further trials. FUNDING: Synairgen Research.
Assuntos
Antivirais/administração & dosagem , Tratamento Farmacológico da COVID-19 , Interferon beta-1a/administração & dosagem , Administração por Inalação , Adulto , Idoso , Antivirais/efeitos adversos , Método Duplo-Cego , Feminino , Humanos , Interferon beta-1a/efeitos adversos , Masculino , Pessoa de Meia-Idade , Nebulizadores e Vaporizadores , Resultado do TratamentoRESUMO
Matrix stiffening with downstream activation of mechanosensitive pathways is strongly implicated in progressive fibrosis; however, pathologic changes in extracellular matrix (ECM) that initiate mechano-homeostasis dysregulation are not defined in human disease. By integrated multiscale biomechanical and biological analyses of idiopathic pulmonary fibrosis lung tissue, we identify that increased tissue stiffness is a function of dysregulated post-translational collagen cross-linking rather than any collagen concentration increase whilst at the nanometre-scale collagen fibrils are structurally and functionally abnormal with increased stiffness, reduced swelling ratio, and reduced diameter. In ex vivo and animal models of lung fibrosis, dual inhibition of lysyl oxidase-like (LOXL) 2 and LOXL3 was sufficient to normalise collagen fibrillogenesis, reduce tissue stiffness, and improve lung function in vivo. Thus, in human fibrosis, altered collagen architecture is a key determinant of abnormal ECM structure-function, and inhibition of pyridinoline cross-linking can maintain mechano-homeostasis to limit the self-sustaining effects of ECM on progressive fibrosis.