Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 109(8): 1421-1435, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35830857

RESUMO

PPFIBP1 encodes for the liprin-ß1 protein, which has been shown to play a role in neuronal outgrowth and synapse formation in Drosophila melanogaster. By exome and genome sequencing, we detected nine ultra-rare homozygous loss-of-function variants in 16 individuals from 12 unrelated families. The individuals presented with moderate to profound developmental delay, often refractory early-onset epilepsy, and progressive microcephaly. Further common clinical findings included muscular hyper- and hypotonia, spasticity, failure to thrive and short stature, feeding difficulties, impaired vision, and congenital heart defects. Neuroimaging revealed abnormalities of brain morphology with leukoencephalopathy, ventriculomegaly, cortical abnormalities, and intracranial periventricular calcifications as major features. In a fetus with intracranial calcifications, we identified a rare homozygous missense variant that by structural analysis was predicted to disturb the topology of the SAM domain region that is essential for protein-protein interaction. For further insight into the effects of PPFIBP1 loss of function, we performed automated behavioral phenotyping of a Caenorhabditis elegans PPFIBP1/hlb-1 knockout model, which revealed defects in spontaneous and light-induced behavior and confirmed resistance to the acetylcholinesterase inhibitor aldicarb, suggesting a defect in the neuronal presynaptic zone. In conclusion, we establish bi-allelic loss-of-function variants in PPFIBP1 as a cause of an autosomal recessive severe neurodevelopmental disorder with early-onset epilepsy, microcephaly, and periventricular calcifications.


Assuntos
Epilepsia , Microcefalia , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Acetilcolinesterase/genética , Animais , Drosophila melanogaster/genética , Epilepsia/genética , Perda de Heterozigosidade , Microcefalia/genética , Transtornos do Neurodesenvolvimento/genética , Linhagem
2.
Brain ; 147(5): 1653-1666, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38380699

RESUMO

GRIN-related disorders are rare developmental encephalopathies with variable manifestations and limited therapeutic options. Here, we present the first non-randomized, open-label, single-arm trial (NCT04646447) designed to evaluate the tolerability and efficacy of L-serine in children with GRIN genetic variants leading to loss-of-function. In this phase 2A trial, patients aged 2-18 years with GRIN loss-of-function pathogenic variants received L-serine for 52 weeks. Primary end points included safety and efficacy by measuring changes in the Vineland Adaptive Behavior Scales, Bayley Scales, age-appropriate Wechsler Scales, Gross Motor Function-88, Sleep Disturbance Scale for Children, Pediatric Quality of Life Inventory, Child Behavior Checklist and the Caregiver-Teacher Report Form following 12 months of treatment. Secondary outcomes included seizure frequency and intensity reduction and EEG improvement. Assessments were performed 3 months and 1 day before starting treatment and 1, 3, 6 and 12 months after beginning the supplement. Twenty-four participants were enrolled (13 males/11 females, mean age 9.8 years, SD 4.8), 23 of whom completed the study. Patients had GRIN2B, GRIN1 and GRIN2A variants (12, 6 and 5 cases, respectively). Their clinical phenotypes showed 91% had intellectual disability (61% severe), 83% had behavioural problems, 78% had movement disorders and 58% had epilepsy. Based on the Vineland Adaptive Behavior Composite standard scores, nine children were classified as mildly impaired (cut-off score > 55), whereas 14 were assigned to the clinically severe group. An improvement was detected in the Daily Living Skills domain (P = 0035) from the Vineland Scales within the mild group. Expressive (P = 0.005), Personal (P = 0.003), Community (P = 0.009), Interpersonal (P = 0.005) and Fine Motor (P = 0.031) subdomains improved for the whole cohort, although improvement was mostly found in the mild group. The Growth Scale Values in the Cognitive subdomain of the Bayley-III Scale showed a significant improvement in the severe group (P = 0.016), with a mean increase of 21.6 points. L-serine treatment was associated with significant improvement in the median Gross Motor Function-88 total score (P = 0.002) and the mean Pediatric Quality of Life total score (P = 0.00068), regardless of severity. L-serine normalized the EEG pattern in five children and the frequency of seizures in one clinically affected child. One patient discontinued treatment due to irritability and insomnia. The trial provides evidence that L-serine is a safe treatment for children with GRIN loss-of-function variants, having the potential to improve adaptive behaviour, motor function and quality of life, with a better response to the treatment in mild phenotypes.


Assuntos
Receptores de N-Metil-D-Aspartato , Serina , Humanos , Feminino , Masculino , Criança , Pré-Escolar , Adolescente , Serina/uso terapêutico , Serina/genética , Receptores de N-Metil-D-Aspartato/genética , Encefalopatias/genética , Encefalopatias/tratamento farmacológico , Resultado do Tratamento , Qualidade de Vida
3.
Hum Mol Genet ; 31(11): 1884-1908, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35094084

RESUMO

X-linked lissencephaly with abnormal genitalia (XLAG) and developmental epileptic encephalopathy-1 (DEE1) are caused by mutations in the Aristaless-related homeobox (ARX) gene, which encodes a transcription factor responsible for brain development. It has been unknown whether the phenotypically diverse XLAG and DEE1 phenotypes may converge on shared pathways. To address this question, a label-free quantitative proteomic approach was applied to the neonatal brain of Arx knockout (ArxKO/Y) and knock-in polyalanine (Arx(GCG)7/Y) mice that are respectively models for XLAG and DEE1. Gene ontology and protein-protein interaction analysis revealed that cytoskeleton, protein synthesis and splicing control are deregulated in an allelic-dependent manner. Decreased α-tubulin content was observed both in Arx mice and Arx/alr-1(KO) Caenorhabditis elegans ,and a disorganized neurite network in murine primary neurons was consistent with an allelic-dependent secondary tubulinopathy. As distinct features of Arx(GCG)7/Y mice, we detected eIF4A2 overexpression and translational suppression in cortex and primary neurons. Allelic-dependent differences were also established in alternative splicing (AS) regulated by PUF60 and SAM68. Abnormal AS repertoires in Neurexin-1, a gene encoding multiple pre-synaptic organizers implicated in synaptic remodelling, were detected in Arx/alr-1(KO) animals and in Arx(GCG)7/Y epileptogenic brain areas and depolarized cortical neurons. Consistent with a conserved role of ARX in modulating AS, we propose that the allelic-dependent secondary synaptopathy results from an aberrant Neurexin-1 repertoire. Overall, our data reveal alterations mirroring the overlapping and variant effects caused by null and polyalanine expanded mutations in ARX. The identification of these effects can aid in the design of pathway-guided therapy for ARX endophenotypes and NDDs with overlapping comorbidities.


Assuntos
Encefalopatias , Lisencefalia , Animais , Encefalopatias/genética , Genes Homeobox , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Lisencefalia/genética , Camundongos , Microtúbulos/metabolismo , Mutação , Proteômica , RNA , Fatores de Transcrição/genética
4.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612920

RESUMO

X-linked epilepsies are a heterogeneous group of epileptic conditions, which often overlap with X-linked intellectual disability. To date, various X-linked genes responsible for epilepsy syndromes and/or developmental and epileptic encephalopathies have been recognized. The electro-clinical phenotype is well described for some genes in which epilepsy represents the core symptom, while less phenotypic details have been reported for other recently identified genes. In this review, we comprehensively describe the main features of both X-linked epileptic syndromes thoroughly characterized to date (PCDH19-related DEE, CDKL5-related DEE, MECP2-related disorders), forms of epilepsy related to X-linked neuronal migration disorders (e.g., ARX, DCX, FLNA) and DEEs associated with recently recognized genes (e.g., SLC9A6, SLC35A2, SYN1, ARHGEF9, ATP6AP2, IQSEC2, NEXMIF, PIGA, ALG13, FGF13, GRIA3, SMC1A). It is often difficult to suspect an X-linked mode of transmission in an epilepsy syndrome. Indeed, different models of X-linked inheritance and modifying factors, including epigenetic regulation and X-chromosome inactivation in females, may further complicate genotype-phenotype correlations. The purpose of this work is to provide an extensive and updated narrative review of X-linked epilepsies. This review could support clinicians in the genetic diagnosis and treatment of patients with epilepsy featuring X-linked inheritance.


Assuntos
Epilepsia , Espasmos Infantis , Feminino , Humanos , Genes Ligados ao Cromossomo X , Epigênese Genética , Genes cdc , Epilepsia/genética , Receptor de Pró-Renina , Protocaderinas , Fatores de Troca do Nucleotídeo Guanina , Fatores de Troca de Nucleotídeo Guanina Rho , N-Acetilglucosaminiltransferases
5.
Genet Med ; 25(8): 100871, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37120726

RESUMO

PURPOSE: HNRNPU haploinsufficiency is associated with developmental and epileptic encephalopathy 54. This neurodevelopmental disorder is characterized by developmental delay, intellectual disability, speech impairment, and early-onset epilepsy. We performed genome-wide DNA methylation (DNAm) analysis in a cohort of individuals to develop a diagnostic biomarker and gain functional insights into the molecular pathophysiology of HNRNPU-related disorder. METHODS: DNAm profiles of individuals carrying pathogenic HNRNPU variants, identified through an international multicenter collaboration, were assessed using Infinium Methylation EPIC arrays. Statistical and functional correlation analyses were performed comparing the HNRNPU cohort with 56 previously reported DNAm episignatures. RESULTS: A robust and reproducible DNAm episignature and global DNAm profile were identified. Correlation analysis identified partial overlap and similarity of the global HNRNPU DNAm profile to several other rare disorders. CONCLUSION: This study demonstrates new evidence of a specific and sensitive DNAm episignature associated with pathogenic heterozygous HNRNPU variants, establishing its utility as a clinical biomarker for the expansion of the EpiSign diagnostic test.


Assuntos
Metilação de DNA , Transtornos do Neurodesenvolvimento , Humanos , Metilação de DNA/genética , Epigenômica , Fenótipo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Biomarcadores
6.
Neurobiol Dis ; 173: 105835, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35932989

RESUMO

Therapies for epilepsy mainly provide symptomatic control of seizures since most of the available drugs do not target disease mechanisms. Moreover, about one-third of patients fail to achieve seizure control. To address the clinical need for disease-modifying therapies, research should focus on targets which permit interventions finely balanced between optimal efficacy and safety. One potential candidate is the brain-specific enzyme cholesterol 24-hydroxylase. This enzyme converts cholesterol to 24S-hydroxycholesterol, a metabolite which among its biological roles modulates neuronal functions relevant for hyperexcitability underlying seizures. To study the role of cholesterol 24-hydroxylase in epileptogenesis, we administered soticlestat (TAK-935/OV935), a potent and selective brain-penetrant inhibitor of the enzyme, during the early disease phase in a mouse model of acquired epilepsy using a clinically relevant dose. During soticlestat treatment, the onset of epilepsy was delayed and the number of ensuing seizures was decreased by about 3-fold compared to vehicle-treated mice, as assessed by EEG monitoring. Notably, the therapeutic effect was maintained 6.5 weeks after drug wash-out when seizure number was reduced by about 4-fold and their duration by 2-fold. Soticlestat-treated mice showed neuroprotection of hippocampal CA1 neurons and hilar mossy cells as assessed by post-mortem brain histology. High throughput RNA-sequencing of hippocampal neurons and glia in mice treated with soticlestat during epileptogenesis showed that inhibition of cholesterol 24-hydroxylase did not directly affect the epileptogenic transcriptional network, but rather modulated a non-overlapping set of genes that might oppose the pathogenic mechanisms of the disease. In human temporal lobe epileptic foci, we determined that cholesterol 24-hydroxylase expression trends higher in neurons, similarly to epileptic mice, while the enzyme is ectopically induced in astrocytes compared to control specimens. Soticlestat reduced significantly the number of spontaneous seizures in chronic epileptic mice when was administered during established epilepsy. Data show that cholesterol 24-hydroxylase contributes to spontaneous seizures and is involved in disease progression, thus it represents a novel target for chronic seizures inhibition and disease-modification therapy in epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Animais , Colesterol/metabolismo , Colesterol 24-Hidroxilase/metabolismo , Modelos Animais de Doenças , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Humanos , Camundongos , Piperidinas , Piridinas , RNA/metabolismo , Convulsões/metabolismo
7.
J Med Genet ; 58(7): 475-483, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32737135

RESUMO

BACKGROUND: Dominant and recessive variants in the KIF1A gene on chromosome 2q37.3 are associated with several phenotypes, although only three syndromes are currently listed in the OMIM classification: hereditary sensory and autonomic neuropathy type 2 and spastic paraplegia type 30, both recessively inherited, and mental retardation type 9 with dominant inheritance. METHODS: In this retrospective multicentre study, we describe the clinical, neuroradiological and genetic features of 19 Caucasian patients (aged 3-65 years) harbouring heterozygous KIF1A variants, and extensively review the available literature to improve current classification of KIF1A-related disorders. RESULTS: Patients were divided into two groups. Group 1 comprised patients with a complex phenotype with prominent pyramidal signs, variably associated in all but one case with additional features (ie, epilepsy, ataxia, peripheral neuropathy, optic nerve atrophy); conversely, patients in group 2 presented an early onset or congenital ataxic phenotype. Fourteen different heterozygous missense variants were detected by next-generation sequencing screening, including three novel variants, most falling within the kinesin motor domain. CONCLUSION: The present study further enlarges the clinical and mutational spectrum of KIF1A-related disorders by describing a large series of patients with dominantly inherited KIF1A pathogenic variants ranging from pure to complex forms of hereditary spastic paraparesis/paraplegias (HSP) and ataxic phenotypes in a lower proportion of cases. A comprehensive review of the literature indicates that KIF1A screening should be implemented in HSP regardless of its mode of inheritance or presentations as well as in other complex neurodegenerative or neurodevelopmental disorders showing congenital or early onset ataxia.


Assuntos
Cinesinas/genética , Doenças Neurodegenerativas/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Adulto , Idoso , Ataxia/congênito , Ataxia/genética , Criança , Pré-Escolar , Feminino , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Estudos Retrospectivos , Adulto Jovem
8.
Hum Mutat ; 41(1): 69-80, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31513310

RESUMO

Developmental and epileptic encephalopathies (DEE) refer to a heterogeneous group of devastating neurodevelopmental disorders. Variants in KCNB1 have been recently reported in patients with early-onset DEE. KCNB1 encodes the α subunit of the delayed rectifier voltage-dependent potassium channel Kv 2.1. We review the 37 previously reported patients carrying 29 distinct KCNB1 variants and significantly expand the mutational spectrum describing 18 novel variants from 27 unreported patients. Most variants occur de novo and mainly consist of missense variants located on the voltage sensor and the pore domain of Kv 2.1. We also report the first inherited variant (p.Arg583*). KCNB1-related encephalopathies encompass a wide spectrum of neurodevelopmental disorders with predominant language difficulties and behavioral impairment. Eighty-five percent of patients developed epilepsies with variable syndromes and prognosis. Truncating variants in the C-terminal domain are associated with a less-severe epileptic phenotype. Overall, this report provides an up-to-date review of the mutational and clinical spectrum of KCNB1, strengthening its place as a causal gene in DEEs and emphasizing the need for further functional studies to unravel the underlying mechanisms.


Assuntos
Epilepsia/diagnóstico , Epilepsia/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Canais de Potássio Shab/genética , Alelos , Estudos de Associação Genética/métodos , Genótipo , Humanos , Fenótipo , Canais de Potássio Shab/química , Canais de Potássio Shab/metabolismo , Relação Estrutura-Atividade
9.
Epilepsia ; 61(11): 2461-2473, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32954514

RESUMO

OBJECTIVE: We aimed to delineate the phenotypic spectrum and long-term outcome of individuals with KCNB1 encephalopathy. METHODS: We collected genetic, clinical, electroencephalographic, and imaging data of individuals with KCNB1 pathogenic variants recruited through an international collaboration, with the support of the family association "KCNB1 France." Patients were classified as having developmental and epileptic encephalopathy (DEE) or developmental encephalopathy (DE). In addition, we reviewed published cases and provided the long-term outcome in patients older than 12 years from our series and from literature. RESULTS: Our series included 36 patients (21 males, median age = 10 years, range = 1.6 months-34 years). Twenty patients (56%) had DEE with infantile onset seizures (seizure onset = 10 months, range = 10 days-3.5 years), whereas 16 (33%) had DE with late onset epilepsy in 10 (seizure onset = 5 years, range = 18 months-25 years) and without epilepsy in six. Cognitive impairment was more severe in individuals with DEE compared to those with DE. Analysis of 73 individuals with KCNB1 pathogenic variants (36 from our series and 37 published individuals in nine reports) showed developmental delay in all with severe to profound intellectual disability in 67% (n = 41/61) and autistic features in 56% (n = 32/57). Long-term outcome in 22 individuals older than 12 years (14 in our series and eight published individuals) showed poor cognitive, psychiatric, and behavioral outcome. Epilepsy course was variable. Missense variants were associated with more frequent and more severe epilepsy compared to truncating variants. SIGNIFICANCE: Our study describes the phenotypic spectrum of KCNB1 encephalopathy, which varies from severe DEE to DE with or without epilepsy. Although cognitive impairment is worse in patients with DEE, long-term outcome is poor for most and missense variants are associated with more severe epilepsy outcome. Further understanding of disease mechanisms should facilitate the development of targeted therapies, much needed to improve the neurodevelopmental prognosis.


Assuntos
Encefalopatias/diagnóstico por imagem , Encefalopatias/genética , Epilepsia/diagnóstico por imagem , Epilepsia/genética , Variação Genética/genética , Canais de Potássio Shab/genética , Adolescente , Adulto , Encefalopatias/fisiopatologia , Criança , Pré-Escolar , Estudos de Coortes , Eletroencefalografia/tendências , Epilepsia/fisiopatologia , Feminino , Humanos , Lactente , Masculino , Estudos Retrospectivos , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
10.
Brain ; 142(7): e39, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31145451

RESUMO

Epilepsy therapy is based on antiseizure drugs that treat the symptom, seizures, rather than the disease and are ineffective in up to 30% of patients. There are no treatments for modifying the disease-preventing seizure onset, reducing severity or improving prognosis. Among the potential molecular targets for attaining these unmet therapeutic needs, we focused on oxidative stress since it is a pathophysiological process commonly occurring in experimental epileptogenesis and observed in human epilepsy. Using a rat model of acquired epilepsy induced by electrical status epilepticus, we show that oxidative stress occurs in both neurons and astrocytes during epileptogenesis, as assessed by measuring biochemical and histological markers. This evidence was validated in the hippocampus of humans who died following status epilepticus. Oxidative stress was reduced in animals undergoing epileptogenesis by a transient treatment with N-acetylcysteine and sulforaphane, which act to increase glutathione levels through complementary mechanisms. These antioxidant drugs are already used in humans for other therapeutic indications. This drug combination transiently administered for 2 weeks during epileptogenesis inhibited oxidative stress more efficiently than either drug alone. The drug combination significantly delayed the onset of epilepsy, blocked disease progression between 2 and 5 months post-status epilepticus and drastically reduced the frequency of spontaneous seizures measured at 5 months without modifying the average seizure duration or the incidence of epilepsy in animals. Treatment also decreased hippocampal neuron loss and rescued cognitive deficits. Oxidative stress during epileptogenesis was associated with de novo brain and blood generation of high mobility group box 1 (HMGB1), a neuroinflammatory molecule implicated in seizure mechanisms. Drug-induced reduction of oxidative stress prevented HMGB1 generation, thus highlighting a potential novel mechanism contributing to therapeutic effects. Our data show that targeting oxidative stress with clinically used drugs for a limited time window starting early after injury significantly improves long-term disease outcomes. This intervention may be considered for patients exposed to potential epileptogenic insults.


Assuntos
Acetilcisteína/farmacologia , Epilepsia/prevenção & controle , Glutationa/metabolismo , Isotiocianatos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Biomarcadores/metabolismo , Estudos de Casos e Controles , Contagem de Células , Disfunção Cognitiva/complicações , Disfunção Cognitiva/prevenção & controle , Modelos Animais de Doenças , Estimulação Elétrica , Epilepsia/complicações , Proteína HMGB1/sangue , Hipocampo/metabolismo , Humanos , Masculino , Neurônios/metabolismo , Neurônios/patologia , Ratos , Estado Epiléptico/complicações , Estado Epiléptico/metabolismo , Estado Epiléptico/prevenção & controle , Sulfóxidos
11.
Minerva Pediatr ; 72(1): 30-36, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31621274

RESUMO

BACKGROUND: Headache is one of the main complaints in pediatric neurology. Exogenous melatonin has been shown to be useful and safe in improving sleep-wake cycles and sleep quality in children. Tryptophan as well plays a key role in sleep regulation. So far, no studies tried to analyze the effects of a combination of both melatonin and tryptophan in treating chronic headache in children affected also by night-time awakenings. METHODS: Thirty-four children with a diagnosis of chronic headache (with or without sleep disorders) have been enrolled. The study was articulated in two steps: 1) each child was observed for one month without any intervention; 2) children have been then randomized into two groups: the "ME-group", which received the nutritional supplement melatonin for two months and the "MET-group", which received the nutritional supplements melatonin, tryptophan, and vitamin B6 for two months. RESULTS: In terms of changes in number of headache events, responders in the ME-group were 91.7% and those in the MET-group were 66.7% (P=0.113). In terms of changes in number of night awakenings, in the ME group, mean number at baseline, after 30 days, and after 60 days were 3.6±3.2, 3.2±3.5, and 2.7±3.4 (P=0.495). In the MET group, mean number of night awakenings was 7.4±8.1, 4.0±4.4, and 3.3±2.9 (P=0.041). CONCLUSIONS: Using either nutritional supplement for two months can help in decreasing the monthly number of headache episodes and night awakenings. The addition of tryptophan and vitamin B6 appears to have stronger influence on night awakenings reduction than melatonin only.


Assuntos
Suplementos Nutricionais , Transtornos da Cefaleia Primários/tratamento farmacológico , Melatonina/administração & dosagem , Transtornos do Sono-Vigília/tratamento farmacológico , Triptofano/administração & dosagem , Vitamina B 6/administração & dosagem , Adolescente , Antidepressivos de Segunda Geração/administração & dosagem , Antioxidantes/administração & dosagem , Criança , Feminino , Transtornos da Cefaleia Primários/complicações , Humanos , Itália , Masculino , Projetos Piloto , Transtornos do Sono-Vigília/complicações , Complexo Vitamínico B/administração & dosagem
12.
Neurobiol Dis ; 124: 373-378, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30590177

RESUMO

The lack of early biomarkers of epileptogenesis precludes a sound prediction of epilepsy development after acute brain injuries and of the natural course of the disease thus impairing the development of antiepileptogenic treatments. We investigated whether the dimensional changes of nonlinear dynamics in EEG/ECoG signals, that were recorded in the early aftermath of different epileptogenic injuries, provide a measure to be exploited as a sensitive prognostic and predictive biomarker for epilepsy. Using three different models of epilepsy in two rodent species, we report a common and significant decrease of nonlinear dynamics dimension in EEG/ECoG tracings during early epileptogenesis. In particular, the magnitude of this dimensional decrease predicts the severity of ensuing epilepsy, and this measure is modulated by disease-modifying or antiepileptogenic treatments. The broad application of EEG/ECoG monitoring in epilepsy underlines the translational value of these findings for enriching the population of patients at risk for developing epilepsy in clinical investigations.


Assuntos
Lesões Encefálicas/fisiopatologia , Eletrocorticografia/métodos , Eletroencefalografia/métodos , Epilepsia/fisiopatologia , Animais , Lesões Encefálicas/complicações , Epilepsia/etiologia , Camundongos , Dinâmica não Linear , Ratos , Processamento de Sinais Assistido por Computador
13.
Clin Genet ; 96(2): 169-175, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31066025

RESUMO

Heterozygous missense variants in the SPTBN2 gene, encoding the non-erythrocytic beta spectrin 2 subunit (beta-III spectrin), have been identified in autosomal dominant spinocerebellar ataxia type 5 (SCA5), a rare adult-onset neurodegenerative disorder characterized by progressive cerebellar ataxia, whereas homozygous loss of function variants in SPTBN2 have been associated with early onset cerebellar ataxia and global developmental delay (SCAR14). Recently, heterozygous SPTBN2 missense variants have been identified in a few patients with an early-onset ataxic phenotype. We report five patients with non-progressive congenital ataxia and psychomotor delay, 4/5 harboring novel heterozygous missense variants in SPTBN2 and one patient with compound heterozygous SPTBN2 variants. With an overall prevalence of 5% in our cohort of unrelated patients screened by targeted next-generation sequencing (NGS) for congenital or early-onset cerebellar ataxia, this study indicates that both dominant and recessive mutations of SPTBN2 together with CACNA1A and ITPR1, are a frequent cause of early-onset/congenital non-progressive ataxia and that their screening should be implemented in this subgroup of disorders.


Assuntos
Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Heterozigoto , Mutação de Sentido Incorreto , Espectrina/genética , Adolescente , Alelos , Sequência de Aminoácidos , Criança , Pré-Escolar , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Modelos Moleculares , Linhagem , Fenótipo , Espectrina/química
14.
Epilepsy Behav ; 101(Pt B): 106275, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31171434

RESUMO

Preclinical studies in immature and adult rodents and clinical observations show that neuroinflammation and oxidative stress are rapid onset phenomena occurring in the brain during status epilepticus and persisting thereafter. Notably, both neuroinflammation and oxidative stress contribute to the acute and long-term sequelae of status epilepticus thus representing potential druggable targets. Antiinflammatory drugs that interfere with the IL-1ß pathway, such as anakinra, can control benzodiazepine-refractory status epilepticus in animals, and there is recent proof-of-concept evidence for therapeutic effects in children with Febrile infection related epilepsy syndrome (FIRES). Inhibitors of monoacylglycerol lipase and P2X7 receptor antagonists are also promising antiinflammatory drug candidates for rapidly aborting de novo status epilepticus and provide neuroprotection. Antiinflammatory and antioxidant drugs administered to rodents during status epilepticus and transiently thereafter, prevent long-term sequelae such as cognitive deficits and seizure progression in animals developing epilepsy. Some drugs are already in medical use and are well-tolerated, therefore, they may be considered for treating status epilepticus and its neurological consequences. Finally, markers of neuroinflammation and oxidative stress are measureable in peripheral blood and by neuroimaging, which offers an opportunity for developing prognostic and predictive mechanistic biomarkers in people exposed to status epilepticus. This article is part of the Special Issue "Proceedings of the 7th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures.


Assuntos
Anti-Inflamatórios/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Biomarcadores/sangue , Biomarcadores/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Espécies Reativas de Oxigênio/antagonistas & inibidores , Convulsões/tratamento farmacológico , Convulsões/metabolismo
16.
Brain Behav Immun ; 72: 14-21, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29031614

RESUMO

Approximately 30% of epilepsy patients experience seizures that are not controlled by the available drugs. Moreover, these drugs provide mainly a symptomatic treatment since they do not interfere with the disease's mechanisms. A mechanistic approach to the discovery of key pathogenic brain modifications causing seizure onset, recurrence and progression is instrumental for designing novel and rationale therapeutic interventions that could modify the disease course or prevent its development. In this regard, increasing evidence shows that neuroinflammation is a pathogenic factor in drug-resistant epilepsies. The High Mobility Group Box 1 (HMGB1)/Toll-like receptor 4 axis is a key initiator of neuroinflammation following brain injuries leading to epilepsy, and its activation contributes to seizure mechanisms in animal models. Recent findings have shown dynamic changes in HMGB1 and its isoforms in the brain and blood of animals exposed to acute brain injuries and undergoing epileptogenesis, and in surgically resected epileptic foci in humans. HMGB1 isoforms reflect different pathophysiological processes, and the disulfide isoform, which is generated in the brain during oxidative stress, is implicated in seizures, cell loss and cognitive dysfunctions. Interfering with disulfide HMGB1-activated cell signaling mediates significant therapeutic effects in epilepsy models. Moreover, both clinical and experimental data suggest that HMGB1 isoforms may serve as mechanistic biomarkers for epileptogenesis and drug-resistant epilepsy. These novel findings suggest that the HMGB1 system could be targeted to prevent seizure generation and may provide clinically useful prognostic biomarkers which may also predict the patient's response to therapy.


Assuntos
Epilepsia/patologia , Proteína HMGB1/metabolismo , Alarminas/metabolismo , Alarminas/fisiologia , Animais , Biomarcadores/sangue , Encéfalo/metabolismo , Disfunção Cognitiva/complicações , Modelos Animais de Doenças , Epilepsia/metabolismo , Proteína HMGB1/fisiologia , Humanos , Convulsões/etiologia , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/metabolismo
17.
Epilepsia ; 59(1): 79-91, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29171003

RESUMO

OBJECTIVE: Status epilepticus (SE) is a life-threatening and commonly drug-refractory condition. Novel therapies are needed to rapidly terminate seizures to prevent mortality and morbidity. Monoacylglycerol lipase (MAGL) is the key enzyme responsible for the hydrolysis of the endocannabinoid 2-arachidonoylglycerol (2-AG) and a major contributor to the brain pool of arachidonic acid (AA). Inhibiting of monoacylglycerol lipase modulates synaptic activity and neuroinflammation, 2 mediators of excessive neuronal activation underlying seizures. We studied the effect of a potent and selective irreversible MAGL inhibitor, CPD-4645, on SE that was refractory to diazepam, its neuropathologic sequelae, and the mechanism underlying the drug's effects. METHODS: Diazepam-resistant SE was induced in adult mice fed with standard or ketogenic diet or in cannabinoid receptor type 1 (CB1) receptor knock-out mice. CPD-4645 (10 mg/kg, subcutaneously) or vehicle was dosed 1 and 7 h after status epilepticus onset in video-electroencephalography (EEG) recorded mice. At the end of SE, mice were examined in the novel object recognition test followed by neuronal cellloss analysis. RESULTS: CPD-4645 maximal plasma and brain concentrations were attained 0.5 h postinjection (half-life = 3.7 h) and elevated brain 2-AG levels by approximately 4-fold. CPD-4645 administered to standard diet-fed mice progressively reduced spike frequency during 3 h postinjection, thereby shortening SE duration by 47%. The drug immediately abrogated SE in ketogenic diet-fed mice. CPD-4645 rescued neuronal cell loss and cognitive deficit and reduced interleukin (IL)-1ß and cyclooxygenase 2 (COX-2) brain expression resulting from SE. The CPD-4645 effect on SE was similar in mice lacking CB1 receptors. SIGNIFICANCE: MAGL represents a novel therapeutic target for treating status epilepticus and improving its sequelae. CPD-4645 therapeutic effects appear to be predominantly mediated by modulation of neuroinflammation.


Assuntos
Carbamatos/uso terapêutico , Monoacilglicerol Lipases/antagonistas & inibidores , Piperidinas/uso terapêutico , Estado Epiléptico , Sulfonamidas/uso terapêutico , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Ondas Encefálicas/efeitos dos fármacos , Ondas Encefálicas/fisiologia , Carbamatos/química , Carbamatos/farmacocinética , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/etiologia , Diazepam/efeitos adversos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Epilepsia Resistente a Medicamentos/induzido quimicamente , Epilepsia Resistente a Medicamentos/enzimologia , Epilepsia Resistente a Medicamentos/terapia , Eletroencefalografia , Agonistas de Aminoácidos Excitatórios/toxicidade , Fluoresceínas/metabolismo , Ácido Caínico/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monoacilglicerol Lipases/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Piperidinas/química , Piperidinas/farmacologia , Distribuição Aleatória , Receptor CB1 de Canabinoide/deficiência , Receptor CB1 de Canabinoide/genética , Reconhecimento Psicológico/efeitos dos fármacos , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/complicações , Estado Epiléptico/enzimologia , Estado Epiléptico/terapia , Sulfonamidas/química , Sulfonamidas/farmacocinética , Fatores de Tempo
18.
Brain ; 140(7): 1885-1899, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575153

RESUMO

Epilepsy therapy is based on antiseizure drugs that treat the symptom, seizures, rather than the disease and are ineffective in up to 30% of patients. There are no treatments for modifying the disease-preventing seizure onset, reducing severity or improving prognosis. Among the potential molecular targets for attaining these unmet therapeutic needs, we focused on oxidative stress since it is a pathophysiological process commonly occurring in experimental epileptogenesis and observed in human epilepsy. Using a rat model of acquired epilepsy induced by electrical status epilepticus, we show that oxidative stress occurs in both neurons and astrocytes during epileptogenesis, as assessed by measuring biochemical and histological markers. This evidence was validated in the hippocampus of humans who died following status epilepticus. Oxidative stress was reduced in animals undergoing epileptogenesis by a transient treatment with N-acetylcysteine and sulforaphane, which act to increase glutathione levels through complementary mechanisms. These antioxidant drugs are already used in humans for other therapeutic indications. This drug combination transiently administered for 2 weeks during epileptogenesis inhibited oxidative stress more efficiently than either drug alone. The drug combination significantly delayed the onset of epilepsy, blocked disease progression between 2 and 5 months post-status epilepticus and drastically reduced the frequency of spontaneous seizures measured at 5 months without modifying the average seizure duration or the incidence of epilepsy in animals. Treatment also decreased hippocampal neuron loss and rescued cognitive deficits. Oxidative stress during epileptogenesis was associated with de novo brain and blood generation of disulfide high mobility group box 1 (HMGB1), a neuroinflammatory molecule implicated in seizure mechanisms. Drug-induced reduction of oxidative stress prevented disulfide HMGB1 generation, thus highlighting a potential novel mechanism contributing to therapeutic effects. Our data show that targeting oxidative stress with clinically used drugs for a limited time window starting early after injury significantly improves long-term disease outcomes. This intervention may be considered for patients exposed to potential epileptogenic insults.


Assuntos
Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Epilepsia/tratamento farmacológico , Domínios HMG-Box/efeitos dos fármacos , Proteína HMGB1/sangue , Proteína HMGB1/metabolismo , Isotiocianatos/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Disfunção Cognitiva/complicações , Disfunção Cognitiva/tratamento farmacológico , Modelos Animais de Doenças , Quimioterapia Combinada , Epilepsia/metabolismo , Proteína HMGB1/biossíntese , Hipocampo/metabolismo , Isotiocianatos/farmacologia , Masculino , Degeneração Neural/dietoterapia , Neurônios/metabolismo , Ratos , Sulfóxidos
19.
Epilepsia ; 58 Suppl 3: 27-38, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28675563

RESUMO

A large body of evidence that has accumulated over the past decade strongly supports the role of inflammation in the pathophysiology of human epilepsy. Specific inflammatory molecules and pathways have been identified that influence various pathologic outcomes in different experimental models of epilepsy. Most importantly, the same inflammatory pathways have also been found in surgically resected brain tissue from patients with treatment-resistant epilepsy. New antiseizure therapies may be derived from these novel potential targets. An essential and crucial question is whether targeting these molecules and pathways may result in anti-ictogenesis, antiepileptogenesis, and/or disease-modification effects. Therefore, preclinical testing in models mimicking relevant aspects of epileptogenesis is needed to guide integrated experimental and clinical trial designs. We discuss the most recent preclinical proof-of-concept studies validating a number of therapeutic approaches against inflammatory mechanisms in animal models that could represent novel avenues for drug development in epilepsy. Finally, we suggest future directions to accelerate preclinical to clinical translation of these recent discoveries.


Assuntos
Modelos Animais de Doenças , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Epilepsia Resistente a Medicamentos/imunologia , Epilepsia/tratamento farmacológico , Epilepsia/imunologia , Inflamação Neurogênica/tratamento farmacológico , Inflamação Neurogênica/imunologia , Animais , Anticonvulsivantes/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Ensaios Clínicos como Assunto , Epilepsia Resistente a Medicamentos/diagnóstico , Drogas em Investigação/uso terapêutico , Epilepsia/diagnóstico , Humanos , Inflamação Neurogênica/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA