RESUMO
PURPOSE: Sleep-disordered breathing may be induced by, exacerbate, or complicate recovery from critical illness. Disordered breathing during sleep, which itself is often fragmented, can go unrecognized in the intensive care unit (ICU). The objective of this study was to investigate the prevalence, severity, and risk factors of sleep-disordered breathing in ICU patients using a single respiratory belt and oxygen saturation signals. METHODS: Patients in three ICUs at Massachusetts General Hospital wore a thoracic respiratory effort belt as part of a clinical trial for up to 7 days and nights. Using a previously developed machine learning algorithm, we processed respiratory and oximetry signals to measure the 3% apnea-hypopnea index (AHI) and estimate AH-specific hypoxic burden and periodic breathing. We trained models to predict AHI categories for 12-h segments from risk factors, including admission variables and bio-signals data, available at the start of these segments. RESULTS: Of 129 patients, 68% had an AHI ≥ 5; 40% an AHI > 15, and 19% had an AHI > 30 while critically ill. Median [interquartile range] hypoxic burden was 2.8 [0.5, 9.8] at night and 4.2 [1.0, 13.7] %min/h during the day. Of patients with AHI ≥ 5, 26% had periodic breathing. Performance of predicting AHI-categories from risk factors was poor. CONCLUSIONS: Sleep-disordered breathing and sleep apnea events while in the ICU are common and are associated with substantial burden of hypoxia and periodic breathing. Detection is feasible using limited bio-signals, such as respiratory effort and SpO2 signals, while risk factors were insufficient to predict AHI severity.
Assuntos
Síndromes da Apneia do Sono , Apneia Obstrutiva do Sono , Humanos , Apneia Obstrutiva do Sono/diagnóstico , Estudos Transversais , Prevalência , Polissonografia , Síndromes da Apneia do Sono/diagnóstico , Síndromes da Apneia do Sono/epidemiologia , Hipóxia/complicações , Unidades de Terapia IntensivaRESUMO
Neurologic disability level at hospital discharge is an important outcome in many clinical research studies. Outside of clinical trials, neurologic outcomes must typically be extracted by labor intensive manual review of clinical notes in the electronic health record (EHR). To overcome this challenge, we set out to develop a natural language processing (NLP) approach that automatically reads clinical notes to determine neurologic outcomes, to make it possible to conduct larger scale neurologic outcomes studies. We obtained 7314 notes from 3632 patients hospitalized at two large Boston hospitals between January 2012 and June 2020, including discharge summaries (3485), occupational therapy (1472) and physical therapy (2357) notes. Fourteen clinical experts reviewed notes to assign scores on the Glasgow Outcome Scale (GOS) with 4 classes, namely 'good recovery', 'moderate disability', 'severe disability', and 'death' and on the Modified Rankin Scale (mRS), with 7 classes, namely 'no symptoms', 'no significant disability', 'slight disability', 'moderate disability', 'moderately severe disability', 'severe disability', and 'death'. For 428 patients' notes, 2 experts scored the cases generating interrater reliability estimates for GOS and mRS. After preprocessing and extracting features from the notes, we trained a multiclass logistic regression model using LASSO regularization and 5-fold cross validation for hyperparameter tuning. The model performed well on the test set, achieving a micro average area under the receiver operating characteristic and F-score of 0.94 (95% CI 0.93-0.95) and 0.77 (0.75-0.80) for GOS, and 0.90 (0.89-0.91) and 0.59 (0.57-0.62) for mRS, respectively. Our work demonstrates that an NLP algorithm can accurately assign neurologic outcomes based on free text clinical notes. This algorithm increases the scale of research on neurological outcomes that is possible with EHR data.
RESUMO
OBJECTIVES: Delirium is a common and frequently underdiagnosed complication in acutely hospitalized patients, and its severity is associated with worse clinical outcomes. We propose a physiologically based method to quantify delirium severity as a tool that can help close this diagnostic gap: the Electroencephalographic Confusion Assessment Method Severity Score (E-CAM-S). DESIGN: Retrospective cohort study. SETTING: Single-center tertiary academic medical center. PATIENTS: Three-hundred seventy-three adult patients undergoing electroencephalography to evaluate altered mental status between August 2015 and December 2019. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We developed the E-CAM-S based on a learning-to-rank machine learning model of forehead electroencephalography signals. Clinical delirium severity was assessed using the Confusion Assessment Method Severity (CAM-S). We compared associations of E-CAM-S and CAM-S with hospital length of stay and inhospital mortality. E-CAM-S correlated with clinical CAM-S (R = 0.67; p < 0.0001). For the overall cohort, E-CAM-S and CAM-S were similar in their strength of association with hospital length of stay (correlation = 0.31 vs 0.41, respectively; p = 0.082) and inhospital mortality (area under the curve = 0.77 vs 0.81; p = 0.310). Even when restricted to noncomatose patients, E-CAM-S remained statistically similar to CAM-S in its association with length of stay (correlation = 0.37 vs 0.42, respectively; p = 0.188) and inhospital mortality (area under the curve = 0.83 vs 0.74; p = 0.112). In addition to previously appreciated spectral features, the machine learning framework identified variability in multiple measures over time as important features in electroencephalography-based prediction of delirium severity. CONCLUSIONS: The E-CAM-S is an automated, physiologic measure of delirium severity that predicts clinical outcomes with a level of performance comparable to conventional interview-based clinical assessment.
Assuntos
Confusão/diagnóstico , Delírio/diagnóstico , Eletroencefalografia/métodos , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Centros Médicos Acadêmicos/estatística & dados numéricos , Adulto , Idoso , Comorbidade , Feminino , Mortalidade Hospitalar/tendências , Hospitais/estatística & dados numéricos , Humanos , Tempo de Internação/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Gravidade do Paciente , Prognóstico , Estudos Retrospectivos , Índice de Gravidade de DoençaRESUMO
OBJECTIVE: Sleep-related respiratory abnormalities are typically detected using polysomnography. There is a need in general medicine and critical care for a more convenient method to detect sleep apnea automatically from a simple, easy-to-wear device. The objective was to detect abnormal respiration and estimate the Apnea-Hypopnea Index (AHI) automatically with a wearable respiratory device with and without SpO2 signals using a large (n = 412) dataset serving as ground truth. DESIGN: Simultaneously recorded polysomnography (PSG) and wearable respiratory effort data were used to train and evaluate models in a cross-validation fashion. Time domain and complexity features were extracted, important features were identified, and a random forest model was employed to detect events and predict AHI. Four models were trained: one each using the respiratory features only, a feature from the SpO2 (%)-signal only, and two additional models that use the respiratory features and the SpO2 (%) feature, one allowing a time lag of 30 s between the two signals. RESULTS: Event-based classification resulted in areas under the receiver operating characteristic curves of 0.94, 0.86, and 0.82, and areas under the precision-recall curves of 0.48, 0.32, and 0.51 for the models using respiration and SpO2, respiration-only, and SpO2-only, respectively. Correlation between expert-labelled and predicted AHI was 0.96, 0.78, and 0.93, respectively. CONCLUSIONS: A wearable respiratory effort signal with or without SpO2 signal predicted AHI accurately, and best performance was achieved with using both signals.
Assuntos
Síndromes da Apneia do Sono , Dispositivos Eletrônicos Vestíveis , Humanos , Oxigênio , Saturação de Oxigênio , Polissonografia , Taxa RespiratóriaRESUMO
BACKGROUND: We sought to develop an automatable score to predict hospitalization, critical illness, or death for patients at risk for coronavirus disease 2019 (COVID-19) presenting for urgent care. METHODS: We developed the COVID-19 Acuity Score (CoVA) based on a single-center study of adult outpatients seen in respiratory illness clinics or the emergency department. Data were extracted from the Partners Enterprise Data Warehouse, and split into development (nâ =â 9381, 7 March-2 May) and prospective (nâ =â 2205, 3-14 May) cohorts. Outcomes were hospitalization, critical illness (intensive care unit or ventilation), or death within 7 days. Calibration was assessed using the expected-to-observed event ratio (E/O). Discrimination was assessed by area under the receiver operating curve (AUC). RESULTS: In the prospective cohort, 26.1%, 6.3%, and 0.5% of patients experienced hospitalization, critical illness, or death, respectively. CoVA showed excellent performance in prospective validation for hospitalization (expected-to-observed ratio [E/O]: 1.01; AUC: 0.76), for critical illness (E/O: 1.03; AUC: 0.79), and for death (E/O: 1.63; AUC: 0.93). Among 30 predictors, the top 5 were age, diastolic blood pressure, blood oxygen saturation, COVID-19 testing status, and respiratory rate. CONCLUSIONS: CoVA is a prospectively validated automatable score for the outpatient setting to predict adverse events related to COVID-19 infection.
Assuntos
COVID-19/diagnóstico , Índice de Gravidade de Doença , Adulto , Idoso , Estado Terminal , Feminino , Hospitalização , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Pacientes Ambulatoriais , Valor Preditivo dos Testes , Prognóstico , Estudos Prospectivos , Curva ROC , Sensibilidade e EspecificidadeRESUMO
BACKGROUNDS: Sleep disturbances are prevalent among elderly individuals. While polysomnography (PSG) serves as the gold standard for sleep monitoring, its extensive setup and data analysis procedures impose significant costs and time constraints, thereby restricting the long-term application within the general public. Our laboratory introduced an innovative biomarker, utilizing artificial intelligence algorithms applied to PSG data to estimate brain age (BA), a metric validated in cohorts with cognitive impairments. Nevertheless, the potential of exercise, which has been a recognized means of enhancing sleep quality in middle-aged and older adults to reduce BA, remains undetermined. METHODS: We conducted an exploratory study to evaluate whether 12 weeks of moderate-intensity exercise can improve cognitive function, sleep quality, and the brain age index (BAI), a biomarker computed from overnight sleep electroencephalogram (EEG), in physically inactive middle-aged and older adults. Home wearable devices were used to monitor heart rate and overnight sleep EEG over this period. The NIH Toolbox Cognition Battery, in-lab overnight polysomnography, cardiopulmonary exercise testing, and a multiplex cytokines assay were employed to compare pre- and post-exercise brain health, exercise capacity, and plasma proteins. RESULTS: In total, 26 participants completed the initial assessment and exercise program, and 24 completed all procedures. Data are presented as mean [lower 95% CI of mean, upper 95% CI of mean]. Participants significantly increased maximal oxygen consumption (Pre: 21.11 [18.98, 23.23], Post 22.39 [20.09, 24.68], mL/kg/min; effect size: -0.33) and decreased resting heart rate (Pre: 66.66 [63.62, 67.38], Post: 65.13 [64.25, 66.93], bpm; effect size: -0.02) and sleeping heart rate (Pre: 64.55 [61.87, 667.23], Post: 62.93 [60.78, 65.09], bpm; effect size: -0.15). Total cognitive performance (Pre: 111.1 [107.6, 114.6], Post: 115.2 [111.9, 118.5]; effect size: 0.49) was significantly improved. No significant differences were seen in BAI or measures of sleep macro- and micro-architecture. Plasma IL-4 (Pre: 0.24 [0.18, 0.3], Post: 0.33 [0.24, 0.42], pg/mL; effect size: 0.49) was elevated, while IL-8 (Pre: 5.5 [4.45, 6.55], Post: 4.3 [3.66, 5], pg/mL; effect size: -0.57) was reduced. CONCLUSIONS: Cognitive function was improved by a 12-week moderate-intensity exercise program in physically inactive middle-aged and older adults, as were aerobic fitness (VO2max) and plasma cytokine profiles. However, we found no measurable effects on sleep architecture or BAI. It remains to be seen whether a study with a larger sample size and more intensive or more prolonged exercise exposure can demonstrate a beneficial effect on sleep quality and brain age.
RESUMO
Sleep electroencephalogram (EEG) signals likely encode brain health information that may identify individuals at high risk for age-related brain diseases. Here, we evaluate the correlation of a previously proposed brain age biomarker, the "brain age index" (BAI), with cognitive test scores and use machine learning to develop and validate a series of new sleep EEG-based indices, termed "sleep cognitive indices" (SCIs), that are directly optimized to correlate with specific cognitive scores. Three overarching cognitive processes were examined: total, fluid (a measure of cognitive processes involved in reasoning-based problem solving and susceptible to aging and neuropathology), and crystallized cognition (a measure of cognitive processes involved in applying acquired knowledge toward problem-solving). We show that SCI decoded information about total cognition (Pearson's r = 0.37) and fluid cognition (Pearson's r = 0.56), while BAI correlated only with crystallized cognition (Pearson's r = - 0.25). Overall, these sleep EEG-derived biomarkers may provide accessible and clinically meaningful indicators of neurocognitive health.
Assuntos
Ondas Encefálicas , Sono , Humanos , Cognição , Resolução de Problemas , Encéfalo , Eletroencefalografia , BiomarcadoresRESUMO
Introduction: To measure sleep in the intensive care unit (ICU), full polysomnography is impractical, while activity monitoring and subjective assessments are severely confounded. However, sleep is an intensely networked state, and reflected in numerous signals. Here, we explore the feasibility of estimating conventional sleep indices in the ICU with heart rate variability (HRV) and respiration signals using artificial intelligence methods Methods: We used deep learning models to stage sleep with HRV (through electrocardiogram) and respiratory effort (through a wearable belt) signals in critically ill adult patients admitted to surgical and medical ICUs, and in age and sex-matched sleep laboratory patients Results: We studied 102 adult patients in the ICU across multiple days and nights, and 220 patients in a clinical sleep laboratory. We found that sleep stages predicted by HRV- and breathing-based models showed agreement in 60% of the ICU data and in 81% of the sleep laboratory data. In the ICU, deep NREM (N2 + N3) proportion of total sleep duration was reduced (ICU 39%, sleep laboratory 57%, p < 0.01), REM proportion showed heavy-tailed distribution, and the number of wake transitions per hour of sleep (median 3.6) was comparable to sleep laboratory patients with sleep-disordered breathing (median 3.9). Sleep in the ICU was also fragmented, with 38% of sleep occurring during daytime hours. Finally, patients in the ICU showed faster and less variable breathing patterns compared to sleep laboratory patients Conclusion: The cardiovascular and respiratory networks encode sleep state information, which, together with artificial intelligence methods, can be utilized to measure sleep state in the ICU.
RESUMO
Intensive care units (ICUs) may disrupt sleep. Quantitative ICU studies of concurrent and continuous sound and light levels and timings remain sparse in part due to the lack of ICU equipment that monitors sound and light. Here, we describe sound and light levels across three adult ICUs in a large urban United States tertiary care hospital using a novel sensor. The novel sound and light sensor is composed of a Gravity Sound Level Meter for sound level measurements and an Adafruit TSL2561 digital luminosity sensor for light levels. Sound and light levels were continuously monitored in the room of 136 patients (mean age = 67.0 (8.7) years, 44.9% female) enrolled in the Investigation of Sleep in the Intensive Care Unit study (ICU-SLEEP; Clinicaltrials.gov: #NCT03355053), at the Massachusetts General Hospital. The hours of available sound and light data ranged from 24.0 to 72.2 hours. Average sound and light levels oscillated throughout the day and night. On average, the loudest hour was 17:00 and the quietest hour was 02:00. Average light levels were brightest at 09:00 and dimmest at 04:00. For all participants, average nightly sound levels exceeded the WHO guideline of < 35 decibels. Similarly, mean nightly light levels varied across participants (minimum: 1.00 lux, maximum: 577.05 lux). Sound and light events were more frequent between 08:00 and 20:00 than between 20:00 and 08:00 and were largely similar on weekdays and weekend days. Peaks in distinct alarm frequencies (Alarm 1) occurred at 01:00, 06:00, and at 20:00. Alarms at other frequencies (Alarm 2) were relatively consistent throughout the day and night, with a small peak at 20:00. In conclusion, we present a sound and light data collection method and results from a cohort of critically ill patients, demonstrating excess sound and light levels across multiple ICUs in a large tertiary care hospital in the United States. ClinicalTrials.gov, #NCT03355053. Registered 28 November 2017, https://clinicaltrials.gov/ct2/show/NCT03355053.
Assuntos
Ritmo Circadiano , Unidades de Terapia Intensiva , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Hospitais Urbanos , Ruído , Sono , Estados UnidosRESUMO
To develop a physiologic grading system for the severity of acute encephalopathy manifesting as delirium or coma, based on EEG, and to investigate its association with clinical outcomes. DESIGN: This prospective, single-center, observational cohort study was conducted from August 2015 to December 2016 and October 2018 to December 2019. SETTING: Academic medical center, all inpatient wards. PATIENTS/SUBJECTS: Adult inpatients undergoing a clinical EEG recording; excluded if deaf, severely aphasic, developmentally delayed, non-English speaking (if noncomatose), or if goals of care focused primarily on comfort measures. Four-hundred six subjects were assessed; two were excluded due to technical EEG difficulties. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: A machine learning model, with visually coded EEG features as inputs, was developed to produce scores that correlate with behavioral assessments of delirium severity (Confusion Assessment Method-Severity [CAM-S] Long Form [LF] scores) or coma; evaluated using Spearman R correlation; area under the receiver operating characteristic curve (AUC); and calibration curves. Associations of Visual EEG Confusion Assessment Method Severity (VE-CAM-S) were measured for three outcomes: functional status at discharge (via Glasgow Outcome Score [GOS]), inhospital mortality, and 3-month mortality. Four-hundred four subjects were analyzed (mean [sd] age, 59.8 yr [17.6 yr]; 232 [57%] male; 320 [79%] White; 339 [84%] non-Hispanic); 132 (33%) without delirium or coma, 143 (35%) with delirium, and 129 (32%) with coma. VE-CAM-S scores correlated strongly with CAM-S scores (Spearman correlation 0.67 [0.62-0.73]; p < 0.001) and showed excellent discrimination between levels of delirium (CAM-S LF = 0 vs ≥ 4, AUC 0.85 [0.78-0.92], calibration slope of 1.04 [0.87-1.19] for CAM-S LF ≤ 4 vs ≥ 5). VE-CAM-S scores were strongly associated with important clinical outcomes including inhospital mortality (AUC 0.79 [0.72-0.84]), 3-month mortality (AUC 0.78 [0.71-0.83]), and GOS at discharge (0.76 [0.69-0.82]). CONCLUSIONS: VE-CAM-S is a physiologic grading scale for the severity of symptoms in the setting of delirium and coma, based on visually assessed electroencephalography features. VE-CAM-S scores are strongly associated with clinical outcomes.
RESUMO
BACKGROUND: Delirium in hospitalized patients is a syndrome of acute brain dysfunction. Diagnostic (International Classification of Diseases [ICD]) codes are often used in studies using electronic health records (EHRs), but they are inaccurate. OBJECTIVE: We sought to develop a more accurate method using natural language processing (NLP) to detect delirium episodes on the basis of unstructured clinical notes. METHODS: We collected 1.5 million notes from >10,000 patients from among 9 hospitals. Seven experts iteratively labeled 200,471 sentences. Using these, we trained three NLP classifiers: Support Vector Machine, Recurrent Neural Networks, and Transformer. Testing was performed using an external data set. We also evaluated associations with delirium billing (ICD) codes, medications, orders for restraints and sitters, direct assessments (Confusion Assessment Method [CAM] scores), and in-hospital mortality. F1 scores, confusion matrices, and areas under the receiver operating characteristic curve (AUCs) were used to compare NLP models. We used the φ coefficient to measure associations with other delirium indicators. RESULTS: The transformer NLP performed best on the following parameters: micro F1=0.978, macro F1=0.918, positive AUC=0.984, and negative AUC=0.992. NLP detections exhibited higher correlations (φ) than ICD codes with deliriogenic medications (0.194 vs 0.073 for ICD codes), restraints and sitter orders (0.358 vs 0.177), mortality (0.216 vs 0.000), and CAM scores (0.256 vs -0.028). CONCLUSIONS: Clinical notes are an attractive alternative to ICD codes for EHR delirium studies but require automated methods. Our NLP model detects delirium with high accuracy, similar to manual chart review. Our NLP approach can provide more accurate determination of delirium for large-scale EHR-based studies regarding delirium, quality improvement, and clinical trails.
RESUMO
STUDY OBJECTIVES: Alterations in sleep spindles have been linked to cognitive impairment. This finding has contributed to a growing interest in identifying sleep-based biomarkers of cognition and neurodegeneration, including sleep spindles. However, flexibility surrounding spindle definitions and algorithm parameter settings present a methodological challenge. The aim of this study was to characterize how spindle detection parameter settings influence the association between spindle features and cognition and to identify parameters with the strongest association with cognition. METHODS: Adult patients (n = 167, 49 ± 18 years) completed the NIH Toolbox Cognition Battery after undergoing overnight diagnostic polysomnography recordings for suspected sleep disorders. We explored 1000 combinations across seven parameters in Luna, an open-source spindle detector, and used four features of detected spindles (amplitude, density, duration, and peak frequency) to fit linear multiple regression models to predict cognitive scores. RESULTS: Spindle features (amplitude, density, duration, and mean frequency) were associated with the ability to predict raw fluid cognition scores (r = 0.503) and age-adjusted fluid cognition scores (r = 0.315) with the best spindle parameters. Fast spindle features generally showed better performance relative to slow spindle features. Spindle features weakly predicted total cognition and poorly predicted crystallized cognition regardless of parameter settings. CONCLUSIONS: Our exploration of spindle detection parameters identified optimal parameters for studies of fluid cognition and revealed the role of parameter interactions for both slow and fast spindles. Our findings support sleep spindles as a sleep-based biomarker of fluid cognition.
Assuntos
Eletroencefalografia , Transtornos do Sono-Vigília , Adulto , Cognição , Humanos , Polissonografia , Sono , Fases do SonoRESUMO
CAR-T cell therapy is an effective cancer therapy for multiple refractory/relapsed hematologic malignancies but is associated with substantial toxicity, including Immune Effector Cell Associated Neurotoxicity Syndrome (ICANS). Improved detection and assessment of ICANS could improve management and allow greater utilization of CAR-T cell therapy, however, an objective, specific biomarker has not been identified. We hypothesized that the severity of ICANS can be quantified based on patterns of abnormal brain activity seen in electroencephalography (EEG) signals. We conducted a retrospective observational study of 120 CAR-T cell therapy patients who had received EEG monitoring. We determined a daily ICANS grade for each patient through chart review. We used visually assessed EEG features and machine learning techniques to develop the Visual EEG-Immune Effector Cell Associated Neurotoxicity Syndrome (VE-ICANS) score and assessed the association between VE-ICANS and ICANS. We also used it to determine the significance and relative importance of the EEG features. We developed the Visual EEG-ICANS (VE-ICANS) grading scale, a grading scale with a physiological basis that has a strong correlation to ICANS severity (R = 0.58 [0.47-0.66]) and excellent discrimination measured via area under the receiver operator curve (AUC = 0.91 for ICANS ≥ 2). This scale shows promise as a biomarker for ICANS which could help to improve clinical care through greater accuracy in assessing ICANS severity.
Assuntos
Neoplasias Hematológicas , Síndromes Neurotóxicas , Receptores de Antígenos Quiméricos , Humanos , Recidiva Local de Neoplasia , Síndromes Neurotóxicas/diagnóstico , Síndromes Neurotóxicas/etiologia , Eletroencefalografia , BiomarcadoresRESUMO
BACKGROUND AND PURPOSE: Reports have suggested that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes neurologic manifestations including encephalopathy and seizures. However, there has been relatively limited electrophysiology data to contextualize these specific concerns and to understand their associated clinical factors. Our objective was to identify EEG abnormalities present in patients with SARS-CoV-2, and to determine whether they reflect new or preexisting brain pathology. METHODS: We studied a consecutive series of hospitalized patients with SARS-CoV-2 who received an EEG, obtained using tailored safety protocols. Data from EEG reports and clinical records were analyzed to identify EEG abnormalities and possible clinical associations, including neurologic symptoms, new or preexisting brain pathology, and sedation practices. RESULTS: We identified 37 patients with SARS-CoV-2 who underwent EEG, of whom 14 had epileptiform findings (38%). Patients with epileptiform findings were more likely to have preexisting brain pathology (6/14, 43%) than patients without epileptiform findings (2/23, 9%; p = 0.042). There were no clear differences in rates of acute brain pathology. One case of nonconvulsive status epilepticus was captured, but was not clearly a direct consequence of SARS-CoV-2. Abnormalities of background rhythms were common, as may be seen in systemic illness, and in part associated with recent sedation (p = 0.022). CONCLUSIONS: Epileptiform abnormalities were common in patients with SARS-CoV-2 referred for EEG, but particularly in the context of preexisting brain pathology and sedation. These findings suggest that neurologic manifestations during SARS-CoV-2 infection may not solely relate to the infection itself, but rather may also reflect patients' broader, preexisting neurologic vulnerabilities.
RESUMO
OBJECTIVE: Brain Age Index (BAI), calculated from sleep electroencephalography (EEG), has been proposed as a biomarker of brain health. This study quantifies night-to-night variability of BAI and establishes probability thresholds for inferring underlying brain pathology based on a patient's BAI. METHODS: 86 patients with multiple nights of consecutive EEG recordings were selected from Epilepsy Monitoring Unit patients whose EEGs reported as within normal limits. While EEGs with epileptiform activity were excluded, the majority of patients included in the study had a diagnosis of chronic epilepsy. BAI was calculated for each 12-hour segment of patient data using a previously established algorithm, and the night-to-night variability in BAI was measured. RESULTS: The within-patient night-to-night standard deviation in BAI was 7.5 years. Estimates of BAI derived by averaging over 2, 3, and 4 nights had standard deviations of 4.7, 3.7, and 3.0 years, respectively. CONCLUSIONS: Averaging BAI over n nights reduces night-to-night variability of BAI by a factor of n, rendering BAI a more suitable biomarker of brain health at the individual level. A brain age risk lookup table of results provides thresholds above which a patient has a high probability of excess BAI. SIGNIFICANCE: With increasing ease of EEG acquisition, including wearable technology, BAI has the potential to track brain health and detect deviations from normal physiologic function. The measure of night-to-night variability and how this is reduced by averaging across multiple nights provides a basis for using BAI in patients' homes to identify patients who should undergo further investigation or monitoring.
Assuntos
Fatores Etários , Algoritmos , Encéfalo/fisiologia , Eletroencefalografia , Sono/fisiologia , Adulto , Envelhecimento/fisiologia , Encefalopatias/diagnóstico , Doença Crônica , Epilepsia/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Razão Sinal-Ruído , Fases do Sono/fisiologia , Fatores de Tempo , Vigília/fisiologiaRESUMO
STUDY OBJECTIVES: Sleep is reflected not only in the electroencephalogram but also in heart rhythms and breathing patterns. We hypothesized that it is possible to accurately stage sleep based on the electrocardiogram (ECG) and respiratory signals. METHODS: Using a dataset including 8682 polysomnograms, we develop deep neural networks to stage sleep from ECG and respiratory signals. Five deep neural networks consisting of convolutional networks and long- and short-term memory networks are trained to stage sleep using heart and breathing, including the timing of R peaks from ECG, abdominal and chest respiratory effort, and the combinations of these signals. RESULTS: ECG in combination with the abdominal respiratory effort achieved the best performance for staging all five sleep stages with a Cohen's kappa of 0.585 (95% confidence interval ±0.017); and 0.760 (±0.019) for discriminating awake vs. rapid eye movement vs. nonrapid eye movement sleep. Performance is better for younger ages, whereas it is robust for body mass index, apnea severity, and commonly used outpatient medications. CONCLUSIONS: Our results validate that ECG and respiratory effort provide substantial information about sleep stages in a large heterogeneous population. This opens new possibilities in sleep research and applications where electroencephalography is not readily available or may be infeasible.
Assuntos
Aprendizado Profundo , Eletrocardiografia , Respiração , Sono , Fases do SonoRESUMO
Background and Purpose Reports have suggested that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes neurologic manifestations including encephalopathy and seizures. However, there has been relatively limited electrophysiology data to contextualize these specific concerns and to understand their associated clinical factors. Our objective was to identify EEG abnormalities present in patients with SARS-CoV-2, and to determine whether they reflect new or preexisting brain pathology. Methods We studied a consecutive series of hospitalized patients with SARS-CoV-2 who received an EEG, obtained using tailored safety protocols. Data from EEG reports and clinical records were analyzed to identify EEG abnormalities and possible clinical associations, including neurologic symptoms, new or preexisting brain pathology, and sedation practices. Results We identified 37 patients with SARS-CoV-2 who underwent EEG, of whom 14 had epileptiform findings (38%). Patients with epileptiform findings were more likely to have preexisting brain pathology (6/14, 43%) than patients without epileptiform findings (2/23, 9%; p=0.042). There were no clear differences in rates of acute brain pathology. One case of nonconvulsive status epilepticus was captured, but was not clearly a direct consequence of SARS-CoV-2. Abnormalities of background rhythms were common, and patients recently sedated were more likely to lack a posterior dominant rhythm (p=0.022). Conclusions Epileptiform abnormalities were common in patients with SARS-CoV-2 referred for EEG, but particularly in the context of preexisting brain pathology and sedation. These findings suggest that neurologic manifestations during SARS-CoV-2 infection may not solely relate to the infection itself, but rather may also reflect patients' broader, preexisting neurologic vulnerabilities.
RESUMO
BACKGROUND: We sought to develop an automatable score to predict hospitalization, critical illness, or death in patients at risk for COVID-19 presenting for urgent care during the Massachusetts outbreak. METHODS: Single-center study of adult outpatients seen in respiratory illness clinics (RICs) or the emergency department (ED), including development (n = 9381, March 7-May 2) and prospective (n = 2205, May 3-14) cohorts. Data was queried from Partners Enterprise Data Warehouse. Outcomes were hospitalization, critical illness or death within 7 days. We developed the COVID-19 Acuity Score (CoVA) using automatically extracted data from the electronic medical record and learning-to-rank ordinal logistic regression modeling. Calibration was assessed using predicted-to-observed event ratio (E/O). Discrimination was assessed by C-statistics (AUC). RESULTS: In the development cohort, 27.3%, 7.2%, and 1.1% of patients experienced hospitalization, critical illness, or death, respectively; and in the prospective cohort, 26.1%, 6.3%, and 0.5%. CoVA showed excellent performance in the development cohort (concurrent validation) for hospitalization (E/O: 1.00, AUC: 0.80); for critical illness (E/O: 1.00, AUC: 0.82); and for death (E/O: 1.00, AUC: 0.87). Performance in the prospective cohort (prospective validation) was similar for hospitalization (E/O: 1.01, AUC: 0.76); for critical illness (E/O 1.03, AUC: 0.79); and for death (E/O: 1.63, AUC=0.93). Among 30 predictors, the top five were age, diastolic blood pressure, blood oxygen saturation, COVID-19 testing status, and respiratory rate. CONCLUSIONS: CoVA is a prospectively validated automatable score to assessing risk for adverse outcomes related to COVID-19 infection in the outpatient setting.