Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 614, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937670

RESUMO

BACKGROUND: Betalains are reddish and yellow pigments that accumulate in a few plant species of the order Caryophyllales. These pigments have antioxidant and medicinal properties and can be used as functional foods. They also enhance resistance to stress or disease in crops. Several plant species belonging to other orders have been genetically engineered to express betalain pigments. Betalains can also be used for flower color modification in ornamental plants, as they confer vivid colors, like red and yellow. To date, betalain engineering to modify the color of Torenia fournieri-or wishbone flower-a popular ornamental plant, has not been attempted. RESULTS: We report the production of purple-reddish-flowered torenia plants from the purple torenia cultivar "Crown Violet."  Three betalain-biosynthetic genes encoding CYP76AD1, dihydroxyphenylalanine (DOPA) 4,5-dioxygenase (DOD), and cyclo-DOPA 5-O-glucosyltransferase (5GT) were constitutively ectopically expressed under the cauliflower mosaic virus (CaMV) 35S promoter, and their expression was confirmed by quantitative real-time PCR (qRT-PCR) analysis. The color traits, measured by spectrophotometric colorimeter and spectral absorbance of fresh petal extracts, revealed a successful flower color modification from purple to reddish. Red pigmentation was also observed in whole plants. LC-DAD-MS and HPLC analyses confirmed that the additional accumulated pigments were betacyanins-mainly betanin (betanidin 5-O-glucoside) and, to a lesser extent, isobetanin (isobetanidin 5-O-glucoside). The five endogenous anthocyanins in torenia flower petals were also detected. CONCLUSIONS: This study demonstrates the possibility of foreign betacyanin accumulation in addition to native pigments in torenia, a popular garden bedding plant. To our knowledge, this is the first report presenting engineered expression of betalain pigments in the family Linderniaceae. Genetic engineering of betalains would be valuable in increasing the flower color variation in future breeding programs for torenia.


Assuntos
Betacianinas , Flores , Engenharia Genética , Betacianinas/metabolismo , Flores/genética , Flores/metabolismo , Pigmentação/genética , Caryophyllales/genética , Caryophyllales/metabolismo , Plantas Geneticamente Modificadas/genética , Betalaínas/metabolismo
2.
J Biol Chem ; 298(11): 102507, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36122804

RESUMO

1-Octen-3-ol is a volatile oxylipin found ubiquitously in Basidiomycota and Ascomycota. The biosynthetic pathway forming 1-octen-3-ol from linoleic acid via the linoleic acid 10(S)-hydroperoxide was characterized 40 years ago in mushrooms, yet the enzymes involved are not identified. The dioxygenase 1 and 2 genes (Ccdox1 and Ccdox2) in the mushroom Coprinopsis cinerea contain an N-terminal cyclooxygenase-like heme peroxidase domain and a C-terminal cytochrome P450-related domain. Herein, we show that recombinant CcDOX1 is responsible for dioxygenation of linoleic acid to form the 10(S)-hydroperoxide, the first step in 1-octen-3-ol synthesis, whereas CcDOX2 conceivably forms linoleic acid 8-hydroperoxide. We demonstrate that KO of the Ccdox1 gene suppressed 1-octen-3-ol synthesis, although added linoleic acid 10(S)-hydroperoxide was still efficiently converted. The P450-related domain of CcDOX1 lacks the characteristic Cys heme ligand and the evidence indicates that a second uncharacterized enzyme converts the 10(S)-hydroperoxide to 1-octen-3-ol. Additionally, we determined the gene KO strain (ΔCcdox1) was less attractive to fruit fly larvae, while the feeding behavior of fungus gnats on ΔCcdox1 mycelia showed little difference from that on the mycelia of the WT strain. The proliferation of fungivorous nematodes on ΔCcdox1 mycelia was similar to or slightly worse than that on WT mycelia. Thus, 1-octen-3-ol seems to be an attractive compound involved in emitter-receiver ecological communication in mushrooms.


Assuntos
Agaricales , Dioxigenases , Oxigenases/metabolismo , Ácido Linoleico , Peróxido de Hidrogênio , Dioxigenases/genética , Octanóis/metabolismo , Agaricales/genética , Agaricales/metabolismo , Etanol , Heme
3.
Plant Physiol ; 183(3): 943-956, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32345769

RESUMO

Several soybean (Glycine max) germplasms, such as Nishiyamahitashi 98-5 (NH), have an intense seaweed-like flavor after cooking because of their high seed S-methylmethionine (SMM) content. In this study, we compared the amounts of amino acids in the phloem sap, leaves, pods, and seeds between NH and the common soybean cultivar Fukuyutaka. This revealed a comparably higher SMM content alongside a higher free Met content in NH seeds, suggesting that the SMM-hyperaccumulation phenotype of NH soybean was related to Met metabolism in seeds. To investigate the molecular mechanism behind SMM hyperaccumulation, we examined the phenotype-associated gene locus in NH plants. Analyses of the quantitative trait loci in segregated offspring of the cross between NH and the common soybean cultivar Williams 82 indicated that one locus on chromosome 10 explains 71.4% of SMM hyperaccumulation. Subsequent fine-mapping revealed that a transposon insertion into the intron of a gene, Glyma.10g172700, is associated with the SMM-hyperaccumulation phenotype. The Glyma.10g172700-encoded recombinant protein showed Met-γ-lyase (MGL) activity in vitro, and the transposon-insertion mutation in NH efficiently suppressed Glyma.10g172700 expression in developing seeds. Exogenous administration of Met to sections of developing soybean seeds resulted in transient increases in Met levels, followed by continuous increases in SMM concentrations, which was likely caused by Met methyltransferase activity in the seeds. Accordingly, we propose that the SMM-hyperaccumulation phenotype is caused by suppressed MGL expression in developing soybean seeds, resulting in transient accumulation of Met, which is converted into SMM to avoid the harmful effects caused by excess free Met.


Assuntos
Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Glycine max/genética , Glycine max/metabolismo , Metionina/genética , Metionina/metabolismo , Sementes/genética , Sementes/metabolismo , Genes de Plantas , Variação Genética , Genótipo , Fenótipo , Folhas de Planta/metabolismo , Locos de Características Quantitativas , Vitamina U/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA