Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(32): e2112656119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35921436

RESUMO

Since the beginning of the COVID-19 pandemic, many dashboards have emerged as useful tools to monitor its evolution, inform the public, and assist governments in decision-making. Here, we present a globally applicable method, integrated in a daily updated dashboard that provides an estimate of the trend in the evolution of the number of cases and deaths from reported data of more than 200 countries and territories, as well as 7-d forecasts. One of the significant difficulties in managing a quickly propagating epidemic is that the details of the dynamic needed to forecast its evolution are obscured by the delays in the identification of cases and deaths and by irregular reporting. Our forecasting methodology substantially relies on estimating the underlying trend in the observed time series using robust seasonal trend decomposition techniques. This allows us to obtain forecasts with simple yet effective extrapolation methods in linear or log scale. We present the results of an assessment of our forecasting methodology and discuss its application to the production of global and regional risk maps.


Assuntos
COVID-19 , Monitoramento Epidemiológico , Pandemias , COVID-19/mortalidade , Previsões , Humanos , Fatores de Tempo
2.
Int J Cardiol ; 418: 132598, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39341506

RESUMO

BACKGROUND: Quantitative coronary angiography (QCA) typically employs traditional edge detection algorithms that often require manual correction. This has important implications for the accuracy of downstream 3D coronary reconstructions and computed haemodynamic indices (e.g. angiography-derived fractional flow reserve). We developed AngioPy, a deep-learning model for coronary segmentation that employs user-defined ground-truth points to boost performance and minimise manual correction. We compared its performance without correction with an established QCA system. METHODS: Deep learning models integrating user-defined ground-truth points were developed using 2455 images from the Fractional Flow Reserve versus Angiography for Multivessel Evaluation 2 (FAME 2) study. External validation was performed on a dataset of 580 images. Vessel dimensions from 203 images with mild/moderate stenoses segmented by AngioPy (without correction) and an established QCA system (Medis QFR®) were compared (609 diameters). RESULTS: The top-performing model had an average F1 score of 0.927 (pixel accuracy 0.998, precision 0.925, sensitivity 0.930, specificity 0.999) with 99.2 % of masks exhibiting an F1 score > 0.8. Similar results were seen with external validation (F1 score 0.924, pixel accuracy 0.997, precision 0.921, sensitivity 0.929, specificity 0.999). Vessel dimensions from AngioPy exhibited excellent agreement with QCA (r = 0.96 [95 % CI 0.95-0.96], p < 0.001; mean difference - 0.18 mm [limits of agreement (LOA): -0.84 to 0.49]), including the minimal luminal diameter (r = 0.93 [95 % CI 0.91-0.95], p < 0.001; mean difference - 0.06 mm [LOA: -0.70 to 0.59]). CONCLUSION: AngioPy, an open-source tool, performs rapid and accurate coronary segmentation without the need for manual correction. It has the potential to increase the accuracy and efficiency of QCA.

3.
Open Heart ; 10(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36596624

RESUMO

BACKGROUND: Angiographic parameters can facilitate the risk stratification of coronary lesions but remain insufficient in the prediction of future myocardial infarction (MI). AIMS: We compared the ability of humans, angiographic parameters and deep learning (DL) to predict the lesion that would be responsible for a future MI in a population of patients with non-significant CAD at baseline. METHODS: We retrospectively included patients who underwent invasive coronary angiography (ICA) for MI, in whom a previous angiogram had been performed within 5 years. The ability of human visual assessment, diameter stenosis, area stenosis, quantitative flow ratio (QFR) and DL to predict the future culprit lesion (FCL) was compared. RESULTS: In total, 746 cropped ICA images of FCL and non-culprit lesions (NCL) were analysed. Predictive models for each modality were developed in a training set before validation in a test set. DL exhibited the best predictive performance with an area under the curve of 0.81, compared with diameter stenosis (0.62, p=0.04), area stenosis (0.58, p=0.05) and QFR (0.67, p=0.13). DL exhibited a significant net reclassification improvement (NRI) compared with area stenosis (0.75, p=0.03) and QFR (0.95, p=0.01), and a positive nonsignificant NRI when compared with diameter stenosis. Among all models, DL demonstrated the highest accuracy (0.78) followed by QFR (0.70) and area stenosis (0.68). Predictions based on human visual assessment and diameter stenosis had the lowest accuracy (0.58). CONCLUSION: In this feasibility study, DL outperformed human visual assessment and established angiographic parameters in the prediction of FCLs. Larger studies are now required to confirm this finding.


Assuntos
Estenose Coronária , Aprendizado Profundo , Reserva Fracionada de Fluxo Miocárdico , Infarto do Miocárdio , Humanos , Estenose Coronária/diagnóstico por imagem , Angiografia Coronária/métodos , Constrição Patológica , Estudos de Viabilidade , Estudos Retrospectivos , Vasos Coronários , Infarto do Miocárdio/diagnóstico por imagem
4.
Elife ; 122023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37083521

RESUMO

Background: Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here, we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022. Methods: We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported by a standardised source for 32 countries over the next 1-4 weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models' predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models' forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models' past predictive performance. Results: Over 52 weeks, we collected forecasts from 48 unique models. We evaluated 29 models' forecast scores in comparison to the ensemble model. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 83% of participating models' forecasts of incident cases (with a total N=886 predictions from 23 unique models), and 91% of participating models' forecasts of deaths (N=763 predictions from 20 models). Across a 1-4 week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over 4 weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models. Conclusions: Our results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than 2 weeks. Funding: AA, BH, BL, LWa, MMa, PP, SV funded by National Institutes of Health (NIH) Grant 1R01GM109718, NSF BIG DATA Grant IIS-1633028, NSF Grant No.: OAC-1916805, NSF Expeditions in Computing Grant CCF-1918656, CCF-1917819, NSF RAPID CNS-2028004, NSF RAPID OAC-2027541, US Centers for Disease Control and Prevention 75D30119C05935, a grant from Google, University of Virginia Strategic Investment Fund award number SIF160, Defense Threat Reduction Agency (DTRA) under Contract No. HDTRA1-19-D-0007, and respectively Virginia Dept of Health Grant VDH-21-501-0141, VDH-21-501-0143, VDH-21-501-0147, VDH-21-501-0145, VDH-21-501-0146, VDH-21-501-0142, VDH-21-501-0148. AF, AMa, GL funded by SMIGE - Modelli statistici inferenziali per governare l'epidemia, FISR 2020-Covid-19 I Fase, FISR2020IP-00156, Codice Progetto: PRJ-0695. AM, BK, FD, FR, JK, JN, JZ, KN, MG, MR, MS, RB funded by Ministry of Science and Higher Education of Poland with grant 28/WFSN/2021 to the University of Warsaw. BRe, CPe, JLAz funded by Ministerio de Sanidad/ISCIII. BT, PG funded by PERISCOPE European H2020 project, contract number 101016233. CP, DL, EA, MC, SA funded by European Commission - Directorate-General for Communications Networks, Content and Technology through the contract LC-01485746, and Ministerio de Ciencia, Innovacion y Universidades and FEDER, with the project PGC2018-095456-B-I00. DE., MGu funded by Spanish Ministry of Health / REACT-UE (FEDER). DO, GF, IMi, LC funded by Laboratory Directed Research and Development program of Los Alamos National Laboratory (LANL) under project number 20200700ER. DS, ELR, GG, NGR, NW, YW funded by National Institutes of General Medical Sciences (R35GM119582; the content is solely the responsibility of the authors and does not necessarily represent the official views of NIGMS or the National Institutes of Health). FB, FP funded by InPresa, Lombardy Region, Italy. HG, KS funded by European Centre for Disease Prevention and Control. IV funded by Agencia de Qualitat i Avaluacio Sanitaries de Catalunya (AQuAS) through contract 2021-021OE. JDe, SMo, VP funded by Netzwerk Universitatsmedizin (NUM) project egePan (01KX2021). JPB, SH, TH funded by Federal Ministry of Education and Research (BMBF; grant 05M18SIA). KH, MSc, YKh funded by Project SaxoCOV, funded by the German Free State of Saxony. Presentation of data, model results and simulations also funded by the NFDI4Health Task Force COVID-19 (https://www.nfdi4health.de/task-force-covid-19-2) within the framework of a DFG-project (LO-342/17-1). LP, VE funded by Mathematical and Statistical modelling project (MUNI/A/1615/2020), Online platform for real-time monitoring, analysis and management of epidemic situations (MUNI/11/02202001/2020); VE also supported by RECETOX research infrastructure (Ministry of Education, Youth and Sports of the Czech Republic: LM2018121), the CETOCOEN EXCELLENCE (CZ.02.1.01/0.0/0.0/17-043/0009632), RECETOX RI project (CZ.02.1.01/0.0/0.0/16-013/0001761). NIB funded by Health Protection Research Unit (grant code NIHR200908). SAb, SF funded by Wellcome Trust (210758/Z/18/Z).


Assuntos
COVID-19 , Doenças Transmissíveis , Epidemias , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , Previsões , Modelos Estatísticos , Estudos Retrospectivos
5.
Med Image Anal ; 69: 101986, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33610918

RESUMO

While the prevalence of Autism Spectrum Disorder (ASD) is increasing, research continues in an effort to identify common etiological and pathophysiological bases. In this regard, modern machine learning and network science pave the way for a better understanding of the neuropathology and the development of diagnosis aid systems. The present work addresses the classification of neurotypical and ASD subjects by combining knowledge about both the structure and the functional activity of the brain. In particular, we model the brain structure as a graph, and the resting-state functional MRI (rs-fMRI) signals as values that live on the nodes of that graph. We then borrow tools from the emerging field of Graph Signal Processing (GSP) to build features related to the frequency content of these signals. In order to make these features highly discriminative, we apply an extension of the Fukunaga-Koontz transform. Finally, we use these new markers to train a decision tree, an interpretable classification scheme, which results in a final diagnosis aid model. Interestingly, the resulting decision tree outperforms state-of-the-art methods on the publicly available Autism Brain Imaging Data Exchange (ABIDE) collection. Moreover, the analysis of the predictive markers reveals the influence of the frontal and temporal lobes in the diagnosis of the disorder, which is in line with previous findings in the literature of neuroscience. Our results indicate that exploiting jointly structural and functional information of the brain can reveal important information about the complexity of the neuropathology.


Assuntos
Transtorno do Espectro Autista , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética
6.
Artigo em Inglês | MEDLINE | ID: mdl-31403414

RESUMO

In this paper, we propose a new graph-based transform and illustrate its potential application to signal compression. Our approach relies on the careful design of a graph that optimizes the overall rate-distortion performance through an effective graph-based transform. We introduce a novel graph estimation algorithm, which uncovers the connectivities between the graph signal values by taking into consideration the coding of both the signal and the graph topology in rate-distortion terms. In particular, we introduce a novel coding solution for the graph by treating the edge weights as another graph signal that lies on the dual graph. Then, the cost of the graph description is introduced in the optimization problem by minimizing the sparsity of the coefficients of its graph Fourier transform (GFT) on the dual graph. In this way, we obtain a convex optimization problem whose solution defines an efficient transform coding strategy. The proposed technique is a general framework that can be applied to different types of signals, and we show two possible application fields, namely natural image coding and piecewise smooth image coding. The experimental results show that the proposed graph-based transform outperforms classical fixed transforms such as DCT for both natural and piecewise smooth images. In the case of depth map coding, the obtained results are even comparable to the state-of-the-art graph-based coding method, that are specifically designed for depth map images.

8.
IEEE Trans Image Process ; 25(4): 1765-78, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26891486

RESUMO

This paper addresses the problem of compression of 3D point cloud sequences that are characterized by moving 3D positions and color attributes. As temporally successive point cloud frames share some similarities, motion estimation is key to effective compression of these sequences. It, however, remains a challenging problem as the point cloud frames have varying numbers of points without explicit correspondence information. We represent the time-varying geometry of these sequences with a set of graphs, and consider 3D positions and color attributes of the point clouds as signals on the vertices of the graphs. We then cast motion estimation as a feature-matching problem between successive graphs. The motion is estimated on a sparse set of representative vertices using new spectral graph wavelet descriptors. A dense motion field is eventually interpolated by solving a graph-based regularization problem. The estimated motion is finally used for removing the temporal redundancy in the predictive coding of the 3D positions and the color characteristics of the point cloud sequences. Experimental results demonstrate that our method is able to accurately estimate the motion between consecutive frames. Moreover, motion estimation is shown to bring a significant improvement in terms of the overall compression performance of the sequence. To the best of our knowledge, this is the first paper that exploits both the spatial correlation inside each frame (through the graph) and the temporal correlation between the frames (through the motion estimation) to compress the color and the geometry of 3D point cloud sequences in an efficient way.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA