Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
ChemSusChem ; 17(1): e202300989, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37668938

RESUMO

In order to effectively practice the Aqueous Lignin Purification with Hot Agents (ALPHA) process for lignin purification and fractionation, the temperatures and feed compositions where regions of liquid-liquid equilibrium (LLE) exist must be identified. To this end, pseudo-ternary phase diagrams for the lignin-acetic acid-water system were mapped out at 45-95 °C and various solvent: feed lignin mass ratios (S : F). For a given temperature, the accompanying SL (solid-liquid), SLL (solid-liquid-liquid), and one-phase regions were also located. For the first time, ALPHA using acetic acid (AcOH)-water solution was applied to a lignin recovered via the commercial LignoBoost process. In addition to determining tie-line compositions for the two regions of LLE that were discovered, the distribution of lignin and key impurities (the latter can negatively impact lignin performance for materials applications) between the two liquid phases was also measured. As a representative example, lignin isolated in the lignin-rich phase was reduced 7x in metals and 4x in polysaccharides by using ALPHA with a feed solvent composition of 50-55 % AcOH and an S : F of 6 : 1, with said lignin being obtained at a yield of 50-70 % of the feed lignin and having a molecular weight triple that of the feed.

2.
Rapid Commun Mass Spectrom ; 26(3): 392-8, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22223328

RESUMO

Quantitative analysis of partially soluble and insoluble polydisperse materials is challenging due to the lack of both appropriate standards and reliable analytical techniques. To this end, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) incorporating a solvent-free sample preparation technique was investigated for the quantitative analysis of partially soluble, polydisperse, polycyclic aromatic hydrocarbon (PAH) oligomers. Molecular weight standards consisting of narrow molecular weight dimer and trimer oligomers of the starting M-50 petroleum pitch were produced using both dense-gas/supercritical extraction (DGE/SCE) and preparative-scale, gel permeation chromatography (GPC). The validity of a MALDI-based, quantitative analysis technique using solvent-free sample preparation was first demonstrated by applying the method of standard addition to a pitch of known composition. The standard addition method was then applied to the quantitative analysis of two insoluble petroleum pitch fractions of unknown oligomeric compositions, with both the dimer and trimer compositions of these fractions being accurately determined. To our knowledge, this study represents the first successful MALDI application of solvent-free quantitative analysis to insoluble, polydisperse materials.

3.
iScience ; 25(12): 105449, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36387023

RESUMO

Lignin recovered from poplar, a key woody biomass resource proposed for lignocellulosic refineries, was investigated for conversion into carbon fibers. Aqueous solutions of ethanol at selected temperatures and compositions, where the requisite solvent and liquefied-lignin phases form, were used to purify and fractionate hybrid poplar (HP) lignin using the Aqueous Lignin Purification with Hot Agents (ALPHA) process. Sugars (<0.1%) and ash (0.01 ± 0.01%) content of the highest molecular weight fraction (Mw = 52 kDa) approached the limits of detection. This 52 kDa fraction could be dry spun with excellent stability and was subsequently converted into carbon fibers having strength (1.1 ± 0.2 GPa) and modulus (78 ± 8 GPa) essentially double those previously achieved with neat poplar and other hardwood lignins. Of equal importance, stabilization times were decreased by a factor of five. Such stabilization and strength/modulus improvements are essential for reducing the overall manufacturing cost of carbon fibers being proposed for cost-sensitive applications.

4.
Rapid Commun Mass Spectrom ; 25(19): 2799-808, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21913258

RESUMO

To date there have been no systematic, quantitative investigations of the effect of sample preparation on the matrix-assisted laser desorption/ionization time-of-flight (MALDI) mass spectrometry response for polydisperse systems. To this end, the interrelationships between sample preparation, analyte molecular weight distribution (MWD) and solubility, and signal response were investigated for mixtures of alkylated polycyclic aromatic hydrocarbon (PAH) oligomers, the constituents of petroleum pitch that serve as precursors for advanced carbon materials. These PAH oligomers served as a useful analyte system for study, as their solvent solubilities decrease significantly with each increasing oligomeric unit. Molecular weight standards consisting of relatively pure dimer and trimer cuts of the starting M-50 petroleum pitch were produced using a dense-gas/supercritical extraction (DGE/SCE) technique and were then used to produce oligomeric mixtures of well-defined composition for study. Both traditional, solvent-based and newer, solvent-free sample preparation methods were evaluated, and their effects on both homogeneity and signal response were determined. While solvent-free sample preparation methods produced homogeneous samples and reproducible results regardless of the MWD of the analyte, solvent-based samples that contained more than one oligomeric cut produced non-homogeneous samples and poor reproducibilities. The differing solubilities of dimer, trimer, and tetramer oligomers in a given solvent (e.g., CS(2) or toluene) were found to be the cause of the inhomogeneities observed in solvent-based sample preparation. A quantitative analysis study performed with dimer/trimer mixtures over a wide range of compositions via solvent-free sample preparation indicates that linear, reproducible calibration curves can be generated and used to calculate the molecular composition of unknown dimer/trimer mixtures with confidence.

5.
ChemSusChem ; 13(17): 4587-4594, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32428389

RESUMO

Hot ethanol-water solutions can be used to simultaneously fractionate and purify softwood Kraft lignin through the Aqueous Lignin Purification with Hot Agents (ALPHA) process, using the regions of liquid-liquid equilibrium (LLE) that form at selected temperatures and solvent-to-lignin feed (S/F) ratios. Lignin, ethanol, and water compositions are measured for the solvent-rich (SR) and lignin-rich (LR) liquid phases in mutual equilibrium, as well as the lignin and metals mass distributions between the two phases. As depicted in quasi-ternary diagrams for clarity, both temperature and S/F ratio can be used to grow, merge, and even split the regions of LLE, giving significant control over both molecular weight (MW) and lignin purity. For example, a solvent comprising 45:55 EtOH/H2 O at 75 °C and an S/F ratio of 6:1 enables recovery of an ultrapure (95 % of Na removed), higher MW (Mn =8400 Da) lignin fraction in the LR phase. On the other hand, 95:5 EtOH/H2 O at 45 °C and S/F=3:1 enables recovery of an ultrapure, low MW (1500 Da) lignin in the SR phase.

6.
J Phys Chem B ; 109(42): 19688-95, 2005 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-16853546

RESUMO

Organic nanoparticles of a fluorinated tetraphenylporphyrin (TBTPP) were produced by rapid expansion of supercritical CO(2) solutions into both air (RESS) and an aqueous receiving solution containing a stabilizing agent (RESOLV). The effect of processing conditions on both particle size and form was investigated. The size of the porphyrin nanoparticles produced via RESS increased in a well-behaved manner from 40 to 80 nm as the preexpansion temperature increased from 40 to 100 degrees C, independent of porphyrin concentration, degree of saturation, and preexpansion pressure. RESOLV of TBTPP + CO(2) solutions was investigated both for minimizing particle growth in the free jet and for the prevention of particle agglomeration. Anionic, nonionic, and polymeric stabilizing agents for the aqueous receiving solution were considered. Expansion into a 0.05 wt % SDS solution produced nanorods 50-100 nm in diameter with an aspect ratio of 3-5. RESOLV in a 0.025 wt % Pluronic F68 solution produced well-dispersed, individual, spherical nanoparticles averaging 23 +/- 10 to 32 +/- 10 nm in diameter, independent of the rapid expansion processing conditions selected. Furthermore, the resulting nanoparticle suspensions were stable, with particle sizes remaining unchanged after several months. However, some particle agglomeration occurred at higher (i.e., 1 wt % TBTPP in CO(2)) concentrations. Contact-angle measurements on solid TBTPP compacts with the tested receiving solutions indicate that a moderate wetting agent such as Pluronic F68 is most effective for preserving the size and form of the porphyrin nanoparticles produced by RESOLV. Finally, the fact that nanoparticles are produced from RESS of TBTPP, in contrast with other organics for which microparticles are produced, can be explained in terms of the high melting point of TBTPP (388 degrees C), which results in a solid-state diffusion coefficient of TBTPP low enough so that particle coalescence is significantly reduced in the free jet.

7.
Chem Commun (Camb) ; (21): 2720-1, 2003 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-14649828

RESUMO

Rapid Expansion of Supercritical Solutions (RESS) was used to produce clean, surfactant-free nanoparticles (average size = 60 nm) of a fluorinated tetraphenylporphyrin from supercritical solutions with CO2.

8.
Bioresour Technol ; 148: 586-90, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24054066

RESUMO

A softwood Kraft black liquor was acidified with carbon dioxide at 115°C and 6.2 bar over a pH range of 13.6-9.5, resulting in the precipitation of liquefied-lignin fractions as a separate phase. Seven such "liquid-lignin" fractions were produced, with each fraction being phase-separated within a narrow pH band of 0.5 units. The fractions were found to be highly hydrated phases, containing 32.3-48.2 wt.% water; as a result, their measured melting points were quite low, 90.7-110.5°C. In contrast, no melting point was detected up to 375°C for any of the lignin fractions after drying. Significant reductions in metals content were observed for the lignin fractions compared to the original black-liquor feed.


Assuntos
Resíduos Industriais/análise , Lignina/química , Papel , Solventes/química , Águas Residuárias/química , Dióxido de Carbono/análise , Fracionamento Químico , Precipitação Química , Elementos Químicos , Concentração de Íons de Hidrogênio
10.
J Phys Chem B ; 113(45): 14971-80, 2009 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-19845375

RESUMO

Ab initio molecular modeling is used to design nonfluorous polymers that are potentially soluble in liquid CO2. We have used calculations to design three nonfluorous compounds meant to model the monomeric repeat units of polymers that exhibit multiple favorable binding sites for CO2. These compounds are methoxy isopropyl acetate, 2-methoxy ethoxy-propane, and 2-methoxy methoxy-propane. We have synthesized oligomers or polymers based on these small compounds and have tested their solubility in CO2. All three of these exhibit appreciable solubility in CO2. At 25 degrees C, oligo(3-acetoxy oxetane)6 is 5 wt % soluble at 25 MPa, the random copolymer (vinyl methoxymethyl ether30-co-vinyl acetate9) is 5 wt % soluble at 70 MPa and random copolymer (vinyl 1-methoxyethyl ether30-co-vinyl acetate9) is 3 wt % soluble at 120 MPa. These oligomers and polymers represent new additions to the very short list of nonfluorous CO2-soluble polymers. However, none of these are more soluble than poly(vinyl acetate), which exhibits the highest CO2 solubility of any known polymer containing only the elements C, H, and O.

11.
Environ Sci Technol ; 39(17): 6839-44, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16190247

RESUMO

Incineration is commonly used to destroy polychlorinated biphenyl (PCB) wastes, but this method of treatment is not ideal for all mixed liquid wastes, especially those containing radioactive materials. Therefore, other remediation technologies are needed to efficiently treat these waste forms. This study examined the supercritical water oxidation (SCWO) of 2-chlorobiphenyl (2-PCB), using hydrogen peroxide as the oxidant and methanol as a cosolvent at 2 vol %. Kinetic studies were carried out in a plug flow reactor at temperatures from 686 to 789 K and a pressure of 250 bar, with reactor residence times ranging from 1.1 to 5.8 s. Least-squares regression of the collective reaction rate data revealed that 2-PCB exhibited second-order kinetics, with an Arrhenius frequency factor, A, equal to 10(18.2+/-2.3) L x mol(-1) x s(-1) and activation energy, Ea, of 181.7 +/- 33.2 kJ/mol. The primary organic reaction products from the SCWO of 2-PCB were biphenyl at low temperatures (<700 K) and CO2 at elevated temperatures. No dioxins or chlorinated dibenzofurans were ever detected in any of the effluent samples. Additional experiments with higher organic feed concentrations (4 vol %) illustrated how the exothermic nature of the organic oxidation reactions can be used to render the process self-sustaining. Finally, SCWO destruction rates greater than 99.98% were achieved for a simulated PCB-contaminated job control waste similar to that encountered at many U.S. Department of Energy sites.


Assuntos
Compostos de Bifenilo/química , Metanol/química , Bifenilos Policlorados/metabolismo , Purificação da Água/métodos , Água/química , Benzofuranos/análise , Dioxinas/análise , Peróxido de Hidrogênio/química , Cinética , Oxirredução , Bifenilos Policlorados/química , Soluções , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA