Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Physica A ; 5872022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36937094

RESUMO

Active-Matter models commonly consider particles with overdamped dynamics subject to a force (speed) with constant modulus and random direction. Some models also include random noise in particle displacement (a Wiener process), resulting in diffusive motion at short time scales. On the other hand, Ornstein-Uhlenbeck processes apply Langevin dynamics to the particles' velocity and predict motion that is not diffusive at short time scales. Experiments show that migrating cells have gradually varying speeds at intermediate and long time scales, with short-time diffusive behavior. While Ornstein-Uhlenbeck processes can describe the moderate-and long-time speed variation, Active-Matter models for over-damped particles can explain the short-time diffusive behavior. Isotropic models cannot explain both regimes, because short-time diffusion renders instantaneous velocity ill-defined, and prevents the use of dynamical equations that require velocity time-derivatives. On the other hand, both models correctly describe some of the different temporal regimes seen in migrating biological cells and must, in the appropriate limit, yield the same observable predictions. Here we propose and solve analytically an Anisotropic Ornstein-Uhlenbeck process for polarized particles, with Langevin dynamics governing the particle's movement in the polarization direction and a Wiener process governing displacement in the orthogonal direction. Our characterization provides a theoretically robust way to compare movement in dimensionless simulations to movement in experiments in which measurements have meaningful space and time units. We also propose an approach to deal with inevitable finite-precision effects in experiments and simulations.

2.
Biophys J ; 118(11): 2801-2815, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32407685

RESUMO

Mesenchymal cell crawling is a critical process in normal development, in tissue function, and in many diseases. Quantitatively predictive numerical simulations of cell crawling thus have multiple scientific, medical, and technological applications. However, we still lack a low-computational-cost approach to simulate mesenchymal three-dimensional (3D) cell crawling. Here, we develop a computationally tractable 3D model (implemented as a simulation in the CompuCell3D simulation environment) of mesenchymal cells crawling on a two-dimensional substrate. The Fürth equation, the usual characterization of mean-squared displacement (MSD) curves for migrating cells, describes a motion in which, for increasing time intervals, cell movement transitions from a ballistic to a diffusive regime. Recent experiments have shown that for very short time intervals, cells exhibit an additional fast diffusive regime. Our simulations' MSD curves reproduce the three experimentally observed temporal regimes, with fast diffusion for short time intervals, slow diffusion for long time intervals, and intermediate time -interval-ballistic motion. The resulting parameterization of the trajectories for both experiments and simulations allows the definition of time- and length scales that translate between computational and laboratory units. Rescaling by these scales allows direct quantitative comparisons among MSD curves and between velocity autocorrelation functions from experiments and simulations. Although our simulations replicate experimentally observed spontaneous symmetry breaking, short-timescale diffusive motion, and spontaneous cell-motion reorientation, their computational cost is low, allowing their use in multiscale virtual-tissue simulations. Comparisons between experimental and simulated cell motion support the hypothesis that short-time actomyosin dynamics affects longer-time cell motility. The success of the base cell-migration simulation model suggests its future application in more complex situations, including chemotaxis, migration through complex 3D matrices, and collective cell motion.


Assuntos
Modelos Biológicos , Movimento Celular , Simulação por Computador , Difusão , Movimento (Física)
3.
Colloids Surf A Physicochem Eng Asp ; 473: 109-114, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27630449

RESUMO

In wet liquid foams, slow diffusion of gas through bubble walls changes bubble pressure, volume and wall curvature. Large bubbles grow at the expenses of smaller ones. The smaller the bubble, the faster it shrinks. As the number of bubbles in a given volume decreases in time, the average bubble size increases: i.e. the foam coarsens. During coarsening, bubbles also move relative to each other, changing bubble topology and shape, while liquid moves within the regions separating the bubbles. Analyzing the combined effects of these mechanisms requires examining a volume with enough bubbles to provide appropriate statistics throughout coarsening. Using a Cellular Potts model, we simulate these mechanisms during the evolution of three-dimensional foams with wetnesses of ϕ = 0.00, 0.05 and 0.20. We represent the liquid phase as an ensemble of many small fluid particles, which allows us to monitor liquid flow in the region between bubbles. The simulations begin with 2 × 105 bubbles for ϕ = 0.00 and 1.25 × 105 bubbles for ϕ = 0.05 and 0.20, allowing us to track the distribution functions for bubble size, topology and growth rate over two and a half decades of volume change. All simulations eventually reach a self-similar growth regime, with the distribution functions time independent and the number of bubbles decreasing with time as a power law whose exponent depends on the wetness.

4.
Phys Rev Lett ; 108(24): 248301, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23004337

RESUMO

We study the topology and geometry of two-dimensional coarsening foam with an arbitrary liquid fraction. To interpolate between the dry limit described by von Neumann's law and the wet limit described by Marqusee's equation, the relevant bubble characteristics are the Plateau border radius and a new variable: the effective number of sides. We propose an equation for the individual bubble growth rate as the weighted sum of the growth through bubble-bubble interfaces and through bubble-Plateau border interfaces. The resulting prediction is successfully tested, without an adjustable parameter, using extensive bidimensional Potts model simulations. The simulations also show that a self-similar growth regime is observed at any liquid fraction, and they also determine how the average size growth exponent, side number distribution, and relative size distribution interpolate between the extreme limits. Applications include concentrated emulsions, grains in polycrystals, and other domains with coarsening that is driven by curvature.


Assuntos
Modelos Químicos , Transição de Fase , Cristalização , Emulsões/química , Gases/química
5.
NAR Genom Bioinform ; 4(1): lqac020, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35300459

RESUMO

To understand the difference between benign and severe outcomes after Coronavirus infection, we urgently need ways to clarify and quantify the time course of tissue and immune responses. Here we re-analyze 72-hour time-series microarrays generated in 2013 by Sims and collaborators for SARS-CoV-1 in vitro infection of a human lung epithelial cell line. Transcriptograms, a Bioinformatics tool to analyze genome-wide gene expression data, allow us to define an appropriate context-dependent threshold for mechanistic relevance of gene differential expression. Without knowing in advance which genes are relevant, classical analyses detect every gene with statistically-significant differential expression, leaving us with too many genes and hypotheses to be useful. Using a Transcriptogram-based top-down approach, we identified three major, differentially-expressed gene sets comprising 219 mainly immune-response-related genes. We identified timescales for alterations in mitochondrial activity, signaling and transcription regulation of the innate and adaptive immune systems and their relationship to viral titer. The methods can be applied to RNA data sets for SARS-CoV-2 to investigate the origin of differential responses in different tissue types, or due to immune or preexisting conditions or to compare cell culture, organoid culture, animal models and human-derived samples.

6.
bioRxiv ; 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32587961

RESUMO

To understand the difference between benign and severe outcomes after Coronavirus infection, we urgently need ways to clarify and quantify the time course of tissue and immune responses. Here we re-analyze 72-hour time-series microarrays generated in 2013 by Sims and collaborators for SARS-CoV-1 in vitro infection of a human lung epithelial cell line. Transcriptograms, a Bioinformatics tool to analyze genome-wide gene expression data, allow us to define an appropriate context-dependent threshold for mechanistic relevance of gene differential expression. Without knowing in advance which genes are relevant, classical analyses detect every gene with statistically-significant differential expression, leaving us with too many genes and hypotheses to be useful. Using a Transcriptogram-based top-down approach, we identified three major, differentially-expressed gene sets comprising 219 mainly immune-response-related genes. We identified timescales for alterations in mitochondrial activity, signaling and transcription regulation of the innate and adaptive immune systems and their relationship to viral titer. At the individual-gene level, EGR3 was significantly upregulated in infected cells. Similar activation in T-cells and fibroblasts in infected lung could explain the T-cell anergy and eventual fibrosis seen in SARS-CoV-1 infection. The methods can be applied to RNA data sets for SARS-CoV-2 to investigate the origin of differential responses in different tissue types, or due to immune or preexisting conditions or to compare cell culture, organoid culture, animal models, and human-derived samples.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(2 Pt 1): 021407, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17025425

RESUMO

We perform extensive Potts model simulations of three-dimensional dry foam coarsening. Starting with 2.25 million bubbles, we have enough statistics to fulfill the three constraints required for the study of statistical scale invariance: first, enough time for the transient to end and reach the scaling state; then, enough time in the scaling state itself to characterize its properties; and finally, enough bubbles at the end to avoid spurious finite size effects. In the scaling state, we find that the average surface area of the bubbles increases linearly with time. The geometry (bubble shape and size) and topology (number of faces and edges), as well as their correlations, become constant in time. Their distributions agree with the data of the literature. We present an analytical model (universal, up to parameters extracted from the simulations) for a disordered foam minimizing its free energy, which agrees with the simulations. We discuss the limitations of the simulations and of the model.

8.
PLoS One ; 10(6): e0127972, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26083246

RESUMO

Tumor cells and structure both evolve due to heritable variation of cell behaviors and selection over periods of weeks to years (somatic evolution). Micro-environmental factors exert selection pressures on tumor-cell behaviors, which influence both the rate and direction of evolution of specific behaviors, especially the development of tumor-cell aggression and resistance to chemotherapies. In this paper, we present, step-by-step, the development of a multi-cell, virtual-tissue model of tumor somatic evolution, simulated using the open-source CompuCell3D modeling environment. Our model includes essential cell behaviors, microenvironmental components and their interactions. Our model provides a platform for exploring selection pressures leading to the evolution of tumor-cell aggression, showing that emergent stratification into regions with different cell survival rates drives the evolution of less cohesive cells with lower levels of cadherins and higher levels of integrins. Such reduced cohesivity is a key hallmark in the progression of many types of solid tumors.


Assuntos
Modelos Biológicos , Neoplasias/patologia , Interface Usuário-Computador , Algoritmos , Adesão Celular , Senescência Celular , Glucose/metabolismo , Humanos , Internet , Mitose , Mutação , Neoplasias/metabolismo
9.
Methods Cell Biol ; 110: 325-66, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22482955

RESUMO

The study of how cells interact to produce tissue development, homeostasis, or diseases was, until recently, almost purely experimental. Now, multi-cell computer simulation methods, ranging from relatively simple cellular automata to complex immersed-boundary and finite-element mechanistic models, allow in silico study of multi-cell phenomena at the tissue scale based on biologically observed cell behaviors and interactions such as movement, adhesion, growth, death, mitosis, secretion of chemicals, chemotaxis, etc. This tutorial introduces the lattice-based Glazier-Graner-Hogeweg (GGH) Monte Carlo multi-cell modeling and the open-source GGH-based CompuCell3D simulation environment that allows rapid and intuitive modeling and simulation of cellular and multi-cellular behaviors in the context of tissue formation and subsequent dynamics. We also present a walkthrough of four biological models and their associated simulations that demonstrate the capabilities of the GGH and CompuCell3D.


Assuntos
Modelos Biológicos , Neoplasias de Tecido Vascular/irrigação sanguínea , Software , Algoritmos , Adesão Celular , Morte Celular , Movimento Celular , Proliferação de Células , Quimiotaxia , Simulação por Computador , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Método de Monte Carlo , Neoplasias de Tecido Vascular/patologia , Neovascularização Patológica , Termodinâmica , Engenharia Tecidual , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
PLoS One ; 6(10): e24999, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22028771

RESUMO

The actions of cell adhesion molecules, in particular, cadherins during embryonic development and morphogenesis more generally, regulate many aspects of cellular interactions, regulation and signaling. Often, a gradient of cadherin expression levels drives collective and relative cell motions generating macroscopic cell sorting. Computer simulations of cell sorting have focused on the interactions of cells with only a few discrete adhesion levels between cells, ignoring biologically observed continuous variations in expression levels and possible nonlinearities in molecular binding. In this paper, we present three models relating the surface density of cadherins to the net intercellular adhesion and interfacial tension for both discrete and continuous levels of cadherin expression. We then use then the Glazier-Graner-Hogeweg (GGH) model to investigate how variations in the distribution of the number of cadherins per cell and in the choice of binding model affect cell sorting. We find that an aggregate with a continuous variation in the level of a single type of cadherin molecule sorts more slowly than one with two levels. The rate of sorting increases strongly with the interfacial tension, which depends both on the maximum difference in number of cadherins per cell and on the binding model. Our approach helps connect signaling at the molecular level to tissue-level morphogenesis.


Assuntos
Movimento Celular , Simulação por Computador , Caderinas/metabolismo , Adesão Celular , Membrana Celular/metabolismo , Cinética , Modelos Biológicos , Termodinâmica
11.
Phys Rev Lett ; 100(24): 248702, 2008 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-18643634

RESUMO

A self-propelled particle model is introduced to study cell sorting occurring in some living organisms. This allows us to evaluate the influence of intrinsic cell motility separately from differential adhesion with fluctuations, a mechanism previously shown to be sufficient to explain a variety of cell rearrangement processes. We find that the tendency of cells to actively follow their neighbors greatly reduces segregation time scales. A finite-size analysis of the sorting process reveals clear algebraic growth laws as in physical phase-ordering processes, albeit with unusual scaling exponents.


Assuntos
Movimento Celular/fisiologia , Hydra/fisiologia , Modelos Biológicos , Regeneração/fisiologia , Animais , Adesão Celular/fisiologia , Hydra/citologia
12.
Dev Biol ; 271(2): 372-87, 2004 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15223341

RESUMO

We present a stochastic cellular automaton model for the behavior of limb bud precartilage mesenchymal cells undergoing chondrogenic patterning. This "agent-oriented" model represents cells by points on a lattice that obey rules motivated by experimental findings. The "cells" follow these rules as autonomous agents, interacting with other cells and with the microenvironments cell activities produce. The rules include random cell motion, production and lateral deposition of a substrate adhesion molecule (SAM, corresponding to fibronectin), production and release of a diffusible growth factor ("activator," corresponding to TGF-beta) that stimulates production of the SAM, and another diffusible factor ("inhibitor") that suppresses the activity of the activator. We implemented the cellular automaton on a two-dimensional (2D) square lattice to emulate the quasi-2D micromass culture extensively used to study patterning in avian limb bud precartilage cells. We identified parameters that produce nodular patterns that resemble, in size and distribution, cell condensations in leg-cell cultures, thus establishing a correspondence between in vitro and in silico results. We then studied the in vitro and in silico micromass cultures experimentally. We altered the standard in vitro micromass culture by diluting the initial cell density, transiently exposing it to exogenous activator, suppressing the inhibitor, and constitutively activating fibronectin production. We altered the standard in silico micromass culture in each case by changing the corresponding parameter. In vitro and in silico experiments agreed well. We also used the model to test hypotheses for differences in the in vitro patterns of cells derived from chick embryo forelimb and hindlimb. We discuss the applicability of this model to limb development in vivo and to other organ development.


Assuntos
Condrogênese/fisiologia , Epistasia Genética , Modelos Biológicos , Algoritmos , Animais , Contagem de Células , Movimento Celular/fisiologia , Embrião de Galinha , Simulação por Computador , Fibronectinas/metabolismo , Botões de Extremidades/embriologia , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/fisiologia , Processos Estocásticos , Transfecção , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA