Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Rev ; 99(3): 1527-1573, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31140374

RESUMO

Synaptic interactions to extract information about wavelength, and thus color, begin in the vertebrate retina with three classes of light-sensitive cells: rod photoreceptors at low light levels, multiple types of cone photoreceptors that vary in spectral sensitivity, and intrinsically photosensitive ganglion cells that contain the photopigment melanopsin. When isolated from its neighbors, a photoreceptor confounds photon flux with wavelength and so by itself provides no information about color. The retina has evolved elaborate color opponent circuitry for extracting wavelength information by comparing the activities of different photoreceptor types broadly tuned to different parts of the visible spectrum. We review studies concerning the circuit mechanisms mediating opponent interactions in a range of species, from tetrachromatic fish with diverse color opponent cell types to common dichromatic mammals where cone opponency is restricted to a subset of specialized circuits. Distinct among mammals, primates have reinvented trichromatic color vision using novel strategies to incorporate evolution of an additional photopigment gene into the foveal structure and circuitry that supports high-resolution vision. Color vision is absent at scotopic light levels when only rods are active, but rods interact with cone signals to influence color perception at mesopic light levels. Recent evidence suggests melanopsin-mediated signals, which have been identified as a substrate for setting circadian rhythms, may also influence color perception. We consider circuits that may mediate these interactions. While cone opponency is a relatively simple neural computation, it has been implemented in vertebrates by diverse neural mechanisms that are not yet fully understood.


Assuntos
Visão de Cores/fisiologia , Células Fotorreceptoras de Vertebrados/fisiologia , Retina/fisiologia , Vertebrados/fisiologia , Animais , Humanos , Rede Nervosa/fisiologia , Retina/citologia
2.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34732574

RESUMO

Cone photoreceptors mediate daylight vision in vertebrates. Changes in neurotransmitter release at cone synapses encode visual information and is subject to precise control by negative feedback from enigmatic horizontal cells. However, the mechanisms that orchestrate this modulation are poorly understood due to a virtually unknown landscape of molecular players. Here, we report a molecular player operating selectively at cone synapses that modulates effects of horizontal cells on synaptic release. Using an unbiased proteomic screen, we identified an adhesion GPCR Latrophilin3 (LPHN3) in horizontal cell dendrites that engages in transsynaptic control of cones. We detected and characterized a prominent splice isoform of LPHN3 that excludes a element with inhibitory influence on transsynaptic interactions. A gain-of-function mouse model specifically routing LPHN3 splicing to this isoform but not knockout of LPHN3 diminished CaV1.4 calcium channel activity profoundly disrupted synaptic release by cones and resulted in synaptic transmission deficits. These findings offer molecular insight into horizontal cell modulation on cone synaptic function and more broadly demonstrate the importance of alternative splicing in adhesion GPCRs for their physiological function.


Assuntos
Processamento Alternativo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Sinapses/metabolismo , Animais , Canais de Cálcio/metabolismo , Camundongos , Camundongos Knockout , Isoformas de Proteínas/metabolismo , Proteoma , Receptores Acoplados a Proteínas G/genética , Receptores de Peptídeos/genética
4.
Am J Pathol ; 191(10): 1805-1821, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34214506

RESUMO

This study tested the hypothesis that diabetes promotes a greater than normal cytosolic calcium level in rod cells that activates a Ca2+-sensitive protease, calpain, resulting in oxidative stress and inflammation, two pathogenic factors of early diabetic retinopathy. Nondiabetic and 2-month diabetic C57Bl/6J and calpain1 knockout (Capn1-/-) mice were studied; subgroups were treated with a calpain inhibitor (CI). Ca2+ content was measured in photoreceptors using Fura-2. Retinal calpain expression was studied by quantitative RT-PCR and immunohistochemistry. Superoxide and expression of inflammatory proteins were measured using published methods. Proteomic analysis was conducted on photoreceptors isolated from untreated diabetic mice or treated daily with CI for 2 months. Cytosolic Ca2+ content was increased twofold in photoreceptors of diabetic mice as compared with nondiabetic mice. Capn1 expression increased fivefold in photoreceptor outer segments of diabetic mice. Pharmacologic inhibition or genetic deletion of Capn1 significantly suppressed diabetes-induced oxidative stress and expression of proinflammatory proteins in retina. Proteomics identified a protein (WW domain-containing oxidoreductase [WWOX]) whose expression was significantly increased in photoreceptors from mice diabetic for 2 months and was inhibited with CI. Knockdown of Wwox using specific siRNA in vitro inhibited increase in superoxide caused by the high glucose. These results suggest that reducing Ca2+ accumulation, suppressing calpain activation, and/or reducing Wwox up-regulation are novel targets for treating early diabetic retinopathy.


Assuntos
Cálcio/metabolismo , Calpaína/metabolismo , Retinopatia Diabética/patologia , Inflamação/patologia , Estresse Oxidativo , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patologia , Animais , Calpaína/genética , Linhagem Celular , Retinopatia Diabética/complicações , Retinopatia Diabética/genética , Retinopatia Diabética/fisiopatologia , Ativação Enzimática/efeitos dos fármacos , Deleção de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Glicoproteínas/farmacologia , Inflamação/complicações , Inflamação/genética , Inflamação/fisiopatologia , Molécula 1 de Adesão Intercelular/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteoma/metabolismo , Retina/patologia , Índice de Gravidade de Doença , Superóxidos/metabolismo , Regulação para Cima/efeitos dos fármacos , Visão Ocular/efeitos dos fármacos , Oxidorredutase com Domínios WW/metabolismo
5.
Int J Mol Sci ; 23(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35742873

RESUMO

Glutamate release from rod and cone photoreceptor cells involves presynaptic ribbons composed largely of the protein RIBEYE. To examine roles of ribbons in rods and cones, we studied mice in which GCamP3 replaced the B-domain of RIBEYE. We discovered that ribbons were absent from rods and cones of both knock-in mice possessing GCamP3 and conditional RIBEYE knockout mice. The mice lacking ribbons showed reduced temporal resolution and contrast sensitivity assessed with optomotor reflexes. ERG recordings showed 50% reduction in scotopic and photopic b-waves. The readily releasable pool (RRP) of vesicles in rods and cones measured using glutamate transporter anion currents (IA(glu)) was also halved. We also studied the release from cones by stimulating them optogenetically with ChannelRhodopsin2 (ChR2) while recording postsynaptic currents in horizontal cells. Recovery of the release from paired pulse depression was twofold slower in the rods and cones lacking ribbons. The release from rods at -40 mV in darkness involves regularly spaced multivesicular fusion events. While the regular pattern of release remained in the rods lacking ribbons, the number of vesicles comprising each multivesicular event was halved. Our results support conclusions that synaptic ribbons in rods and cones expand the RRP, speed up vesicle replenishment, and augment some forms of multivesicular release. Slower replenishment and a smaller RRP in photoreceptors lacking ribbons may contribute to diminished temporal frequency responses and weaker contrast sensitivity.


Assuntos
Células Fotorreceptoras Retinianas Cones , Sinapses , Animais , Ácido Glutâmico/metabolismo , Camundongos , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
6.
Gene Ther ; 28(5): 223-241, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32123325

RESUMO

Recent advances in viral vector engineering, as well as an increased understanding of the cellular and molecular mechanism of retinal diseases, have led to the development of novel gene therapy approaches. Furthermore, ease of accessibility and ocular immune privilege makes the retina an ideal target for gene therapies. In this study, the nuclear hormone receptor gene Nr2e3 was evaluated for efficacy as broad-spectrum therapy to attenuate early to intermediate stages of retinal degeneration in five unique mouse models of retinitis pigmentosa (RP). RP is a group of heterogenic inherited retinal diseases associated with over 150 gene mutations, affecting over 1.5 million individuals worldwide. RP varies in age of onset, severity, and rate of progression. In addition, ~40% of RP patients cannot be genetically diagnosed, confounding the ability to develop personalized RP therapies. Remarkably, Nr2e3 administered therapy resulted in reduced retinal degeneration as observed by increase in photoreceptor cells, improved electroretinogram, and a dramatic molecular reset of key transcription factors and associated gene networks. These therapeutic effects improved retinal homeostasis in diseased tissue. Results of this study provide evidence that Nr2e3 can serve as a broad-spectrum therapy to treat multiple forms of RP.


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Animais , Modelos Animais de Doenças , Homeostase , Humanos , Camundongos , Receptores Nucleares Órfãos , Células Fotorreceptoras , Retina , Degeneração Retiniana/genética , Degeneração Retiniana/terapia , Retinose Pigmentar/genética , Retinose Pigmentar/terapia
7.
Pflugers Arch ; 473(9): 1469-1491, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33779813

RESUMO

Light-evoked voltage responses of rod and cone photoreceptor cells in the vertebrate retina must be converted to a train of synaptic vesicle release events for transmission to downstream neurons. This review discusses the processes, proteins, and structures that shape this critical early step in vision, focusing on studies from salamander retina with comparisons to other experimental animals. Many mechanisms are conserved across species. In cones, glutamate release is confined to ribbon release sites although rods are also capable of release at non-ribbon sites. The role of non-ribbon release in rods remains unclear. Release from synaptic ribbons in rods and cones involves at least three vesicle pools: a readily releasable pool (RRP) matching the number of membrane-associated vesicles along the ribbon base, a ribbon reserve pool matching the number of additional vesicles on the ribbon, and an enormous cytoplasmic reserve. Vesicle release increases in parallel with Ca2+ channel activity. While the opening of only a few Ca2+ channels beneath each ribbon can trigger fusion of a single vesicle, sustained release rates in darkness are governed by the rate at which the RRP can be replenished. The number of vacant release sites, their functional status, and the rate of vesicle delivery in turn govern replenishment. Along with an overview of the mechanisms of exocytosis and endocytosis, we consider specific properties of ribbon-associated proteins and pose a number of remaining questions about this first synapse in the visual system.


Assuntos
Canais de Cálcio/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Humanos , Estimulação Luminosa/métodos , Retina/metabolismo , Retina/ultraestrutura , Células Fotorreceptoras Retinianas Cones/ultraestrutura , Células Fotorreceptoras Retinianas Bastonetes/ultraestrutura , Sinapses/ultraestrutura
8.
Biophys J ; 118(4): 967-979, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653448

RESUMO

First proposed as a specialized mode of release at sensory neurons possessing ribbon synapses, multivesicular release has since been described throughout the central nervous system. Many aspects of multivesicular release remain poorly understood. We explored mechanisms underlying simultaneous multivesicular release at ribbon synapses in salamander retinal rod photoreceptors. We assessed spontaneous release presynaptically by recording glutamate transporter anion currents (IA(glu)) in rods. Spontaneous IA(glu) events were correlated in amplitude and kinetics with simultaneously measured miniature excitatory postsynaptic currents in horizontal cells. Both measures indicated that a significant fraction of events is multiquantal, with an analysis of IA(glu) revealing that multivesicular release constitutes ∼30% of spontaneous release events. IA(glu) charge transfer increased linearly with event amplitude showing that larger events involve greater glutamate release. The kinetics of large and small IA(glu) events were identical as were rise times of large and small miniature excitatory postsynaptic currents, indicating that the release of multiple vesicles during large events is highly synchronized. Effects of exogenous Ca2+ buffers suggested that multiquantal, but not uniquantal, release occurs preferentially near Ca2+ channels clustered beneath synaptic ribbons. Photoinactivation of ribbons reduced the frequency of spontaneous multiquantal events without affecting uniquantal release frequency, showing that spontaneous multiquantal release requires functional ribbons. Although both occur at ribbon-style active zones, the absence of cross-depletion indicates that evoked and spontaneous multiquantal release from ribbons involve different vesicle pools. Introducing an inhibitory peptide into rods to interfere with the SNARE protein, syntaxin 3B, selectively reduced multiquantal event frequency. These results support the hypothesis that simultaneous multiquantal release from rods arises from homotypic fusion among neighboring vesicles on ribbons and involves syntaxin 3B.


Assuntos
Sinapses , Vesículas Sinápticas , Potenciais Pós-Sinápticos Excitadores , Proteínas Qa-SNARE , Células Fotorreceptoras Retinianas Bastonetes , Transmissão Sináptica
9.
Exp Eye Res ; 189: 107847, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31628905

RESUMO

Lateral inhibitory feedback from horizontal cells (HCs) to cones establishes center-surround receptive fields and color opponency in the retina. When HCs hyperpolarize to light, inhibitory feedback to cones increases activation of cone Ca2+ currents (ICa) that can in turn activate additional currents. We recorded simultaneously from cones and HCs to analyze cone currents activated by HC feedback in salamander retina. Depolarization-activated inward tail currents in cones were inhibited by CaCCinh-A01 that inhibits both Ano1 and Ano2 Ca2+-activated Cl- currents (ICl(Ca)). An Ano1-selective inhibitor Ani9 was less effective suggesting that Ano2 is the predominant ICl(Ca) subtype in cones. CaCCinh-A01 inhibited feedback currents more strongly when intracellular Ca2+ in cones was buffered with 0.05 mM EGTA compared to stronger buffering with 5 mM EGTA. By contrast, blocking glutamate transporter anion currents (ICl(Glu)) with TBOA had stronger inhibitory effects on cone feedback currents when Ca2+ buffering was strong. Inward feedback currents ran down at rates intermediate between rundown of glutamate release and ICl(Ca), consistent with contributions to feedback from both ICl(Ca) and ICl(Glu). These results suggest that Cl- channels coupled to glutamate transporters help to speed inward feedback currents initiated by local changes in intracellular [Ca2+] close to synaptic ribbons of cones whereas Ano2 Ca2+-activated Cl- channels contribute to slower components of feedback regulated by spatially extensive changes in intracellular [Ca2+].


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Cálcio/metabolismo , Cloretos/metabolismo , Potenciais da Membrana/fisiologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Sinapses/metabolismo , Ambystoma , Animais , Modelos Animais , Técnicas de Patch-Clamp , Células Fotorreceptoras Retinianas Cones/citologia
10.
J Neurosci ; 37(17): 4618-4634, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28363980

RESUMO

G-protein ßγ subunits (Gßγ) interact with presynaptic proteins and regulate neurotransmitter release downstream of Ca2+ influx. To accomplish their roles in sensory signaling, photoreceptor synapses use specialized presynaptic proteins that support neurotransmission at active zone structures known as ribbons. While several G-protein coupled receptors (GPCRs) influence synaptic transmission at ribbon synapses of cones and other retinal neurons, it is unknown whether Gßγ contributes to these effects. We tested whether activation of one particular GPCR, a metabotropic glutamate receptor (mGluR), can reduce cone synaptic transmission via Gßγ in tiger salamander retinas. In recordings from horizontal cells, we found that an mGluR agonist (L-AP4) reduced cone-driven light responses and mEPSC frequency. In paired recordings of cones and horizontal cells, L-AP4 slightly reduced cone ICa (∼10%) and caused a larger reduction in cone-driven EPSCs (∼30%). Proximity ligation assay revealed direct interactions between SNAP-25 and Gßγ subunits in retinal synaptic layers. Pretreatment with the SNAP-25 cleaving protease BoNT/A inhibited L-AP4 effects on synaptic transmission, as did introduction of a peptide derived from the SNAP-25 C terminus. Introducing Gßγ subunits directly into cones reduced EPSC amplitude. This effect was inhibited by BoNT/A, supporting a role for Gßγ/SNAP-25 interactions. However, the mGluR-dependent reduction in ICa was not mimicked by Gßγ, indicating that this effect was independent of Gßγ. The finding that synaptic transmission at cone ribbon synapses is regulated by Gßγ/SNAP-25 interactions indicates that these mechanisms are shared by conventional and ribbon-type synapses. Gßγ liberated from other photoreceptor GPCRs is also likely to regulate synaptic transmission.SIGNIFICANCE STATEMENT Dynamic regulation of synaptic transmission by presynaptic G-protein coupled receptors shapes information flow through neural circuits. At the first synapse in the visual system, presynaptic metabotropic glutamate receptors (mGluRs) regulate cone photoreceptor synaptic transmission, although the mechanisms and functional impact of this are unclear. We show that mGluRs regulate light response encoding across the cone synapse, accomplished in part by triggering G-protein ßγ subunits (Gßγ) interactions with SNAP-25, a core component of the synaptic vesicle fusion machinery. In addition to revealing a role in visual processing, this provides the first demonstration that Gßγ/SNAP-25 interactions regulate synaptic function at a ribbon-type synapse, contributing to an emerging picture of the ubiquity of Gßγ/SNARE interactions in regulating synaptic transmission throughout the nervous system.


Assuntos
Ambystoma/fisiologia , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Células Fotorreceptoras Retinianas Cones/fisiologia , Proteínas SNARE/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Masculino , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Células Horizontais da Retina/metabolismo , Células Horizontais da Retina/fisiologia
11.
Biophys J ; 113(10): 2281-2298, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-28863864

RESUMO

Neurons that form ribbon-style synapses are specialized for continuous exocytosis. To this end, their synaptic terminals contain numerous synaptic vesicles, some of which are ribbon associated, that have difference susceptibilities for undergoing Ca2+-dependent exocytosis. In this study, we probed the relationship between previously defined vesicle populations and determined their fusion competency with respect to SNARE complex formation. We found that both the rapidly releasing vesicle pool and the releasable vesicle pool of the retinal bipolar cell are situated at the ribbon-style active zones, where they functionally interact. A peptide inhibitor of SNARE complex formation failed to block exocytosis from either pool, suggesting that these two vesicle pools have formed the SNARE complexes necessary for fusion. By contrast, a third, slower component of exocytosis was blocked by the peptide, as was the functional replenishment of vesicle pools, indicating that few vesicles outside of the ribbon-style active zones were initially fusion competent. In cone photoreceptors, similar to bipolar cells, fusion of the initial ribbon-associated synaptic vesicle cohort was not blocked by the SNARE complex-inhibiting peptide, whereas a later phase of exocytosis, attributable to the recruitment and subsequent fusion of vesicles newly arrived at the synaptic ribbons, was blocked. Together, our results support a model in which stimulus-evoked exocytosis in retinal ribbon synapses is SNARE-dependent; where vesicles higher up on the synaptic ribbon replenish the rapidly releasing vesicle pool; and at any given time, there are sufficient SNARE complexes to support the fusion of the entire ribbon-associated cohort of vesicles. An important implication of these results is that ribbon-associated vesicles can form intervesicular SNARE complexes, providing mechanistic insight into compound fusion at ribbon-style synapses.


Assuntos
Vesículas Sinápticas/metabolismo , Animais , Cálcio/metabolismo , Exocitose , Carpa Dourada , Neurônios/citologia , Retina/citologia , Proteínas SNARE/metabolismo
12.
J Neurosci ; 36(39): 10075-88, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27683904

RESUMO

UNLABELLED: Inhibitory feedback from horizontal cells (HCs) to cones generates center-surround receptive fields and color opponency in the retina. Mechanisms of HC feedback remain unsettled, but one hypothesis proposes that an ephaptic mechanism may alter the extracellular electrical field surrounding photoreceptor synaptic terminals, thereby altering Ca(2+) channel activity and photoreceptor output. An ephaptic voltage change produced by current flowing through open channels in the HC membrane should occur with no delay. To test for this mechanism, we measured kinetics of inhibitory feedback currents in Ambystoma tigrinum cones and rods evoked by hyperpolarizing steps applied to synaptically coupled HCs. Hyperpolarizing HCs stimulated inward feedback currents in cones that averaged 8-9 pA and exhibited a biexponential time course with time constants averaging 14-17 ms and 120-220 ms. Measurement of feedback-current kinetics was limited by three factors: (1) HC voltage-clamp speed, (2) cone voltage-clamp speed, and (3) kinetics of Ca(2+) channel activation or deactivation in the photoreceptor terminal. These factors totaled ∼4-5 ms in cones meaning that the true fast time constants for HC-to-cone feedback currents were 9-13 ms, slower than expected for ephaptic voltage changes. We also compared speed of feedback to feedforward glutamate release measured at the same cone/HC synapses and found a latency for feedback of 11-14 ms. Inhibitory feedback from HCs to rods was also significantly slower than either measurement kinetics or feedforward release. The finding that inhibitory feedback from HCs to photoreceptors involves a significant delay indicates that it is not due to previously proposed ephaptic mechanisms. SIGNIFICANCE STATEMENT: Lateral inhibitory feedback from horizontal cells (HCs) to photoreceptors creates center-surround receptive fields and color-opponent interactions. Although underlying mechanisms remain unsettled, a longstanding hypothesis proposes that feedback is due to ephaptic voltage changes that regulate photoreceptor synaptic output by altering Ca(2+) channel activity. Ephaptic processes should occur with no delay. We measured kinetics of inhibitory feedback currents evoked in photoreceptors with voltage steps applied to synaptically coupled HCs and found that feedback is too slow to be explained by ephaptic voltage changes generated by current flowing through continuously open channels in HC membranes. By eliminating the proposed ephaptic mechanism for HC feedback regulation of photoreceptor Ca(2+) channels, our data support earlier proposals that synaptic cleft pH changes are more likely responsible.


Assuntos
Comunicação Celular/fisiologia , Retroalimentação Fisiológica/fisiologia , Inibição Neural/fisiologia , Células Fotorreceptoras/fisiologia , Células Horizontais da Retina/fisiologia , Transmissão Sináptica/fisiologia , Ambystoma , Animais , Feminino , Masculino , Rede Nervosa/fisiologia , Condução Nervosa/fisiologia
13.
Am J Pathol ; 186(1): 199-209, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26608452

RESUMO

Mucolipidosis IV is a debilitating developmental lysosomal storage disorder characterized by severe neuromotor retardation and progressive loss of vision, leading to blindness by the second decade of life. Mucolipidosis IV is caused by loss-of-function mutations in the MCOLN1 gene, which encodes the transient receptor potential channel protein mucolipin-1. Ophthalmic pathology in patients includes corneal haze and progressive retinal and optic nerve atrophy. Herein, we report ocular pathology in Mcoln1(-/-) mouse, a good phenotypic model of the disease. Early, but non-progressive, thinning of the photoreceptor layer, reduced levels of rhodopsin, disrupted rod outer segments, and widespread accumulation of the typical storage inclusion bodies were the major histological findings in the Mcoln1(-/-) retina. Electroretinograms showed significantly decreased functional response (scotopic a- and b-wave amplitudes) in the Mcoln1(-/-) mice. At the ultrastructural level, we observed formation of axonal spheroids and decreased density of axons in the optic nerve of the aged (6-month-old) Mcoln1(-/-) mice, which indicates progressive axonal degeneration. Our data suggest that mucolipin-1 plays a role in postnatal development of photoreceptors and provides a set of outcome measures that can be used for ocular therapy development for mucolipidosis IV.


Assuntos
Mucolipidoses/patologia , Nervo Óptico/patologia , Distrofias Retinianas/patologia , Animais , Western Blotting , Modelos Animais de Doenças , Eletrorretinografia , Imunofluorescência , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucolipidoses/complicações , Tomografia de Coerência Óptica , Canais de Potencial de Receptor Transitório/deficiência , Canais de Potencial de Receptor Transitório/genética
14.
J Neurosci ; 35(32): 11364-73, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26269643

RESUMO

In addition to vesicle release at synaptic ribbons, rod photoreceptors are capable of substantial slow release at non-ribbon release sites triggered by Ca(2+)-induced Ca(2+) release (CICR) from intracellular stores. To maintain CICR as rods remain depolarized in darkness, we hypothesized that Ca(2+) released into the cytoplasm from terminal endoplasmic reticulum (ER) can be replenished continuously by ions diffusing within the ER from the soma. We measured [Ca(2+)] changes in cytoplasm and ER of rods from Ambystoma tigrinum retina using various dyes. ER [Ca(2+)] changes were measured by loading ER with fluo-5N and then washing dye from the cytoplasm with a dye-free patch pipette solution. Small dye molecules diffused within ER between soma and terminal showing a single continuous ER compartment. Depolarization of rods to -40 mV depleted Ca(2+) from terminal ER, followed by a decline in somatic ER [Ca(2+)]. Local activation of ryanodine receptors in terminals with a spatially confined puff of ryanodine caused a decline in terminal ER [Ca(2+)], followed by a secondary decrease in somatic ER. Localized photolytic uncaging of Ca(2+) from o-nitrophenyl-EGTA in somatic ER caused an abrupt Ca(2+) increase in somatic ER, followed by a slower Ca(2+) increase in terminal ER. These data suggest that, during maintained depolarization, a soma-to-terminal [Ca(2+)] gradient develops within the ER that promotes diffusion of Ca(2+) ions to resupply intraterminal ER Ca(2+) stores and thus sustain CICR-mediated synaptic release. The ability of Ca(2+) to move freely through the ER may also promote bidirectional communication of Ca(2+) changes between soma and terminal. SIGNIFICANCE STATEMENT: Vertebrate rod and cone photoreceptors both release vesicles at synaptic ribbons, but rods also exhibit substantial slow release at non-ribbon sites triggered by Ca(2+)-induced Ca(2+) release (CICR). Blocking CICR inhibits >50% of release from rods in darkness. How do rods maintain sufficiently high [Ca(2+)] in terminal endoplasmic reticulum (ER) to support sustained CICR-driven synaptic transmission? We show that maintained depolarization creates a [Ca(2+)] gradient within the rod ER lumen that promotes soma-to-terminal diffusion of Ca(2+) to replenish intraterminal ER stores. This mechanism allows CICR-triggered synaptic release to be sustained indefinitely while rods remain depolarized in darkness. Free diffusion of Ca(2+) within the ER may also communicate synaptic Ca(2+) changes back to the soma to influence other critical cell processes.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Escuridão , Retículo Endoplasmático/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Sinapses/fisiologia , Ambystoma , Animais , Sinalização do Cálcio/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Feminino , Masculino , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Rianodina/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
15.
J Physiol ; 594(22): 6661-6677, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27345444

RESUMO

KEY POINTS: In the vertebrate retina, photoreceptors influence the signalling of neighbouring photoreceptors through lateral-inhibitory interactions mediated by horizontal cells (HCs). These interactions create antagonistic centre-surround receptive fields important for detecting edges and generating chromatically opponent responses in colour vision. The mechanisms responsible for inhibitory feedback from HCs involve changes in synaptic cleft pH that modulate photoreceptor calcium currents. However, the sources of synaptic protons involved in feedback and the mechanisms for their removal from the cleft when HCs hyperpolarize to light remain unknown. Our results indicate that Na+ -H+ exchangers are the principal source of synaptic cleft protons involved in HC feedback but that synaptic cleft alkalization during light-evoked hyperpolarization of HCs also involves changes in bicarbonate transport across the HC membrane. In addition to delineating processes that establish lateral inhibition in the retina, these results contribute to other evidence showing the key role for pH in regulating synaptic signalling throughout the nervous system. ABSTRACT: Lateral-inhibitory feedback from horizontal cells (HCs) to photoreceptors involves changes in synaptic cleft pH accompanying light-evoked changes in HC membrane potential. We analysed HC to cone feedback by studying surround-evoked light responses of cones and by obtaining paired whole cell recordings from cones and HCs in salamander retina. We tested three potential sources for synaptic cleft protons: (1) generation by extracellular carbonic anhydrase (CA), (2) release from acidic synaptic vesicles and (3) Na+ /H+ exchangers (NHEs). Neither antagonizing extracellular CA nor blocking loading of protons into synaptic vesicles eliminated feedback. However, feedback was eliminated when extracellular Na+ was replaced with choline and significantly reduced by an NHE inhibitor, cariporide. Depriving NHEs of intracellular protons by buffering HC cytosol with a pH 9.2 pipette solution eliminated feedback, whereas alkalinizing the cone cytosol did not, suggesting that HCs are a major source for protons in feedback. We also examined mechanisms for changing synaptic cleft pH in response to changes in HC membrane potential. Increasing the trans-membrane proton gradient by lowering the extracellular pH from 7.8 to 7.4 to 7.1 strengthened feedback. While maintaining constant extracellular pH with 1 mm HEPES, removal of bicarbonate abolished feedback. Elevating intracellular bicarbonate levels within HCs prevented this loss of feedback. A bicarbonate transport inhibitor, 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS), also blocked feedback. Together, these results suggest that NHEs are the primary source of extracellular protons in HC feedback but that changes in cleft pH accompanying changes in HC membrane voltage also require bicarbonate flux across the HC membrane.


Assuntos
Ambystoma/metabolismo , Bicarbonatos/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Horizontais da Retina/metabolismo , Animais , Cálcio/metabolismo , Retroalimentação , Concentração de Íons de Hidrogênio , Luz , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp/métodos , Estimulação Luminosa/métodos , Prótons , Retina/metabolismo , Sinapses/metabolismo , Urodelos/metabolismo
16.
Eur J Neurosci ; 44(3): 2015-27, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27255664

RESUMO

Photoreceptors have depolarized resting potentials that stimulate calcium-dependent release continuously from a large vesicle pool but neurons can also release vesicles without stimulation. We characterized the Ca(2+) dependence, vesicle pools, and release sites involved in spontaneous release at photoreceptor ribbon synapses. In whole-cell recordings from light-adapted horizontal cells (HCs) of tiger salamander retina, we detected miniature excitatory post-synaptic currents (mEPSCs) when no stimulation was applied to promote exocytosis. Blocking Ca(2+) influx by lowering extracellular Ca(2+) , by application of Cd(2+) and other agents reduced the frequency of mEPSCs but did not eliminate them, indicating that mEPSCs can occur independently of Ca(2+) . We also measured release presynaptically from rods and cones by examining quantal glutamate transporter anion currents. Presynaptic quantal event frequency was reduced by Cd(2+) or by increased intracellular Ca(2+) buffering in rods, but not in cones, that were voltage clamped at -70 mV. By inhibiting the vesicle cycle with bafilomycin, we found the frequency of mEPSCs declined more rapidly than the amplitude of evoked excitatory post-synaptic currents (EPSCs) suggesting a possible separation between vesicle pools in evoked and spontaneous exocytosis. We mapped sites of Ca(2+) -independent release using total internal reflectance fluorescence (TIRF) microscopy to visualize fusion of individual vesicles loaded with dextran-conjugated pHrodo. Spontaneous release in rods occurred more frequently at non-ribbon sites than evoked release events. The function of Ca(2+) -independent spontaneous release at continuously active photoreceptor synapses remains unclear, but the low frequency of spontaneous quanta limits their impact on noise.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Exocitose , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Cálcio/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Masculino , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Urodelos
17.
Synapse ; 70(1): 1-14, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26541100

RESUMO

Postsynaptic responses are a product of quantal amplitude (Q), size of the releasable vesicle pool (N), and release probability (P). Voltage-dependent changes in presynaptic Ca(2+) entry alter postsynaptic responses primarily by changing P but have also been shown to influence N. With simultaneous whole cell recordings from cone photoreceptors and horizontal cells in tiger salamander retinal slices, we measured N and P at cone ribbon synapses by using a train of depolarizing pulses to stimulate release and deplete the pool. We developed an analytical model that calculates the total pool size contributing to release under different stimulus conditions by taking into account the prior history of release and empirically determined properties of replenishment. The model provided a formula that calculates vesicle pool size from measurements of the initial postsynaptic response and limiting rate of release evoked by a train of pulses, the fraction of release sites available for replenishment, and the time constant for replenishment. Results of the model showed that weak and strong depolarizing stimuli evoked release with differing probabilities but the same size vesicle pool. Enhancing intraterminal Ca(2+) spread by lowering Ca(2+) buffering or applying BayK8644 did not increase PSCs evoked with strong test steps, showing there is a fixed upper limit to pool size. Together, these results suggest that light-evoked changes in cone membrane potential alter synaptic release solely by changing release probability.


Assuntos
Potenciais da Membrana/fisiologia , Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Horizontais da Retina/fisiologia , Sinapses/fisiologia , Vesículas Sinápticas/metabolismo , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Ambystoma , Animais , Cálcio/metabolismo , Agonistas dos Canais de Cálcio/farmacologia , Canais de Cálcio/metabolismo , Feminino , Cinética , Masculino , Potenciais da Membrana/efeitos dos fármacos , Modelos Neurológicos , Técnicas de Patch-Clamp , Probabilidade , Retina/efeitos dos fármacos , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Células Horizontais da Retina/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Vesículas Sinápticas/efeitos dos fármacos , Técnicas de Cultura de Tecidos
18.
J Neurosci ; 34(47): 15689-700, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25411497

RESUMO

Activity-dependent shifts in ionic concentrations and water that accompany neuronal and glial activity can generate osmotic forces with biological consequences for brain physiology. Active regulation of osmotic gradients and cellular volume requires volume-sensitive ion channels. In the vertebrate retina, critical support to volume regulation is provided by Müller astroglia, but the identity of their osmosensor is unknown. Here, we identify TRPV4 channels as transducers of mouse Müller cell volume increases into physiological responses. Hypotonic stimuli induced sustained [Ca(2+)]i elevations that were inhibited by TRPV4 antagonists and absent in TRPV4(-/-) Müller cells. Glial TRPV4 signals were phospholipase A2- and cytochrome P450-dependent, characterized by slow-onset and Ca(2+) waves, and, in excess, were sufficient to induce reactive gliosis. In contrast, neurons responded to TRPV4 agonists and swelling with fast, inactivating Ca(2+) signals that were independent of phospholipase A2. Our results support a model whereby swelling and proinflammatory signals associated with arachidonic acid metabolites differentially gate TRPV4 in retinal neurons and glia, with potentially significant consequences for normal and pathological retinal function.


Assuntos
Eicosanoides/metabolismo , Neuroglia/fisiologia , Neurônios/fisiologia , Retina/fisiologia , Canais de Cátion TRPV/fisiologia , Animais , Gliose/patologia , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Concentração Osmolar , Técnicas de Patch-Clamp , Fosfolipases A2/fisiologia , Retina/citologia , Células Ganglionares da Retina/fisiologia , Canais de Cátion TRPV/genética
19.
J Neurosci ; 33(5): 2071-86, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23365244

RESUMO

Vesicle release from rod photoreceptors is regulated by Ca(2+) entry through L-type channels located near synaptic ribbons. We characterized sites and kinetics of vesicle release in salamander rods by using total internal reflection fluorescence microscopy to visualize fusion of individual synaptic vesicles. A small number of vesicles were loaded by brief incubation with FM1-43 or a dextran-conjugated, pH-sensitive form of rhodamine, pHrodo. Labeled organelles matched the diffraction-limited size of fluorescent microspheres and disappeared rapidly during stimulation. Consistent with fusion, depolarization-evoked vesicle disappearance paralleled electrophysiological release kinetics and was blocked by inhibiting Ca(2+) influx. Rods maintained tonic release at resting membrane potentials near those in darkness, causing depletion of membrane-associated vesicles unless Ca(2+) entry was inhibited. This depletion of release sites implies that sustained release may be rate limited by vesicle delivery. During depolarizing stimulation, newly appearing vesicles approached the membrane at ∼800 nm/s, where they paused for ∼60 ms before fusion. With fusion, vesicles advanced ∼18 nm closer to the membrane. Release events were concentrated near ribbons, but lengthy depolarization also triggered release from more distant non-ribbon sites. Consistent with greater contributions from non-ribbon sites during lengthier depolarization, damaging the ribbon by fluorophore-assisted laser inactivation (FALI) of Ribeye caused only weak inhibition of exocytotic capacitance increases evoked by 200-ms depolarizing test steps, whereas FALI more strongly inhibited capacitance increases evoked by 25 ms steps. Amplifying release by use of non-ribbon sites when rods are depolarized in darkness may improve detection of decrements in release when they hyperpolarize to light.


Assuntos
Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Sinapses/fisiologia , Vesículas Sinápticas/fisiologia , Animais , Capacitância Elétrica , Feminino , Masculino , Terminações Pré-Sinápticas/fisiologia , Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Urodelos
20.
Synapse ; 68(11): 518-28, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25049035

RESUMO

Calcium operates by several mechanisms to regulate glutamate release at rod and cone synaptic terminals. In addition to serving as the exocytotic trigger, Ca2+ accelerates replenishment of vesicles in cones and triggers Ca2+-induced Ca2+ release (CICR) in rods. Ca2+ thereby amplifies sustained exocytosis, enabling photoreceptor synapses to encode constant and changing light. A complete picture of the role of Ca2+ in regulating synaptic transmission requires an understanding of the endogenous Ca2+ handling mechanisms at the synapse. We therefore used the "added buffer" approach to measure the endogenous Ca2+ binding ratio (κendo ) and extrusion rate constant (γ) in synaptic terminals of photoreceptors in retinal slices from tiger salamander. We found that κendo was similar in both cell types-∼25 and 50 in rods and cones, respectively. Using measurements of the decay time constants of Ca2+ transients, we found that γ was also similar, with values of ∼100 s(-1) and 160 s(-1) in rods and cones, respectively. The measurements of κendo differ considerably from measurements in retinal bipolar cells, another ribbon-bearing class of retinal neurons, but are comparable to similar measurements at other conventional synapses. The values of γ are slower than at other synapses, suggesting that Ca2+ ions linger longer in photoreceptor terminals, supporting sustained exocytosis, CICR, and Ca2+ -dependent ribbon replenishment. The mechanisms of endogenous Ca2+ handling in photoreceptors are thus well-suited for supporting tonic neurotransmission. Similarities between rod and cone Ca2+ handling suggest that neither buffering nor extrusion underlie differences in synaptic transmission kinetics.


Assuntos
Sinalização do Cálcio , Terminações Pré-Sinápticas/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Ambystoma , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA