Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 15(48): e1901803, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31240816

RESUMO

Carbon dots (C-dots) are generally separated into graphene quantum dots (GQDs) and carbon nanodots (CNDs) based on their respective top-down and bottom-up preparation processes. However, GQDs can be prepared by carbonization of small-molecule precursors as revealed with unconventional preparation strategies. Thus, it is their structures rather than their precursors and preparation strategy that govern whether C-dots are GQDs or CNDs. Here, the composites, structure, and electronic properties of C-dots are discussed. C-dots generally consist of a graphite-like core and amorphous oxygen-containing shell. When graphite becomes C-dots, its conduction and valence bands are separated, and the quantum confinement effect appears. Combined with the light-harvesting ability inherited from graphite, electrons in the core of C-dots are transferred from conduction to valence bands, leading to electron-hole pair formation upon light excitation. The photoexcitation activities, such as photovoltaic conversion, photocatalysis, and photodynamic therapy, are influenced by the electronic properties of the core. Different to the semiconductor properties of core, the C-dot shell is electrochemically active, leading to electrochemiluminescence (ECL). The oxygen-containing groups in shell can conjugate to functional species for use in imaging and therapy. The applications of C-dots beyond photoluminescence, including ECL, solar photovoltaics, photocatalysis, and theranostics, are reviewed.

2.
Chem Commun (Camb) ; 55(44): 6241-6244, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31086880

RESUMO

Glutathione (GSH) in tumors consumes 1O2 and seriously inhibits the PDT effect. MnO2-coated porphyrin metal-organic frameworks are developed to realize the oxidation of GSH by MnO2 for enhanced PDT, activated MR imaging, and controllable release of DOX as magnetic resonance imaging guided drug-PDT dual-therapy.


Assuntos
Glutationa/metabolismo , Imageamento por Ressonância Magnética/métodos , Compostos de Manganês/química , Estruturas Metalorgânicas/química , Óxidos/química , Fotoquimioterapia/métodos , Porfirinas/química , Terapia Combinada
3.
ACS Appl Mater Interfaces ; 10(34): 28390-28398, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30066560

RESUMO

Chemotherapy remains restricted by its toxic adverse effects and resistance to drugs. The treatment of nitric oxide (NO) combined with imaging-guided physical therapy is a promising alternative for clinical applications. Herein, we report nanoscale metal-organic framework (NMOF) systems to integrate magnetic resonance (MR) imaging, spatiotemporally controllable NO delivery, and photothermal therapy (PTT) as a new means of cancer theranostics. As a proof of concept, the NMOFs are prepared with biocompatible Zr4+ ions and Mn-porphyrin as a bridging ligand. By inserting paramagnetic Mn ions into porphyrin rings, Mn-porphyrin renders the NMOFs strong T1-weighted MR contrast capacity and high photothermal conversion for efficient PTT. S-Nitrosothiol (SNO) is conjugated to the surfaces of the NMOFs for heat-sensitive NO generation. Moreover, single near-infrared (NIR) light triggers the controllable NO release and PTT simultaneously for their efficient synergistic therapy with one-step operation. Upon intravenous injection, NMOF-SNO shows effective tumor accumulation as exposed by the MR images of the tumor-bearing mice. When exposed to the NIR laser, the tumors of mice injected with NMOF-SNO are completely inhibited, verifying the efficiency of NMOF-SNO. For the first time, Mn-porphyrin NMOFs are developed to be an effective theranostic system for MR imaging-guided controllable NO release and photothermal synergetic therapy under single NIR irradiation.


Assuntos
Porfirinas/química , Animais , Imageamento por Ressonância Magnética , Estruturas Metalorgânicas , Camundongos , Óxido Nítrico , Nanomedicina Teranóstica
4.
ACS Appl Mater Interfaces ; 10(26): 22445-22452, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29883089

RESUMO

Counterfeiting is a global epidemic that is compelling the development of new anticounterfeiting strategy. Herein, we report a novel multiple anticounterfeiting encoding strategy of invisible fluorescent quick response (QR) codes with emission color as information storage unit. The strategy requires red, green, and blue (RGB) light-emitting materials for different emission colors as encrypting information, single excitation for all of the emission for practicability, and ultraviolet (UV) excitation for invisibility under daylight. Therefore, RGB light-emitting nanoscale metal-organic frameworks (NMOFs) are designed as inks to construct the colorful light-emitting boxes for information encrypting, while three black vertex boxes were used for positioning. Full-color emissions are obtained by mixing the trichromatic NMOFs inks through inkjet printer. The encrypting information capacity is easily adjusted by the number of light-emitting boxes with the infinite emission colors. The information is decoded with specific excitation light at 275 nm, making the QR codes invisible under daylight. The composition of inks, invisibility, inkjet printing, and the abundant encrypting information all contribute to multiple anticounterfeiting. The proposed QR codes pattern holds great potential for advanced anticounterfeiting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA