Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Anal Chem ; 96(26): 10639-10647, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38889191

RESUMO

Hepatic toxicity is a leading cause of the termination of clinical trials and the withdrawal of therapeutics following regulatory approval. The detection of drug-induced liver injury (DILI) is therefore of importance to ensure patient safety and the effectiveness of novel small molecules and drugs. DILI encompasses drug-induced steatosis (DIS) and drug-induced phospholipidosis (DIPL) which involve the accumulation of excess intracellular lipids. Here, we develop hyperspectral stimulated Raman scattering (SRS) microscopy as a label-free methodology for discriminating DIS and DIPL in mammalian cell culture. We demonstrate that hyperspectral SRS imaging in tandem with spectral phasor analysis is capable of discriminating DIS and DIPL based on the nature and distribution of intracellular lipids resulting from each process. To demonstrate the practical application of this methodology, we develop a panel of alkyne-tagged propranolol analogues that display varying DILI effects. Using hyperspectral SRS imaging together with spectral phasor analysis, our label-free methodology corroborated the standard fluorescence-based assay for DILI. As a label-free screening method, it offers a convenient and expedient methodology for visualizing hepatotoxicity in cell cultures which could be integrated into the early stages of the drug development process for screening new chemical entities for DILI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico por imagem , Humanos , Microscopia Óptica não Linear/métodos , Análise Espectral Raman/métodos , Propranolol/química , Células Hep G2
2.
Analyst ; 149(2): 553-562, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38088863

RESUMO

Hyperspectral stimulated Raman scattering (SRS) microscopy is a powerful method for direct visualisation and compositional analysis of cellular lipid droplets. Here we report the application of spectral phasor analysis as a convenient method for the segmentation of lipid droplets using the hyperspectral SRS spectrum in the high wavenumber and fingerprint region of the spectrum. Spectral phasor analysis was shown to discriminate six fatty acids based on vibrational spectroscopic features in solution. The methodology was then applied to studying fatty acid metabolism and storage in a mammalian cancer cell model and during drug-induced steatosis in a hepatocellular carcinoma cell model. The accumulation of fatty acids into cellular lipid droplets was shown to vary as a function of the degree of unsaturation, whilst in a model of drug-induced steatosis, the detection of increased saturated fatty acid esters was observed. Taking advantage of the fingerprint and high wavenumber regions of the SRS spectrum has yielded a greater insight into lipid droplet composition in a cellular context. This approach will find application in the label-free profiling of intracellular lipids in complex disease models.


Assuntos
Quimiometria , Gotículas Lipídicas , Animais , Microscopia Óptica não Linear , Ácidos Graxos , Microscopia/métodos , Análise Espectral Raman/métodos , Mamíferos
3.
Analyst ; 149(19): 4789-4810, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39258960

RESUMO

One of the challenges facing biology is to understand metabolic events at a single cellular level. While approaches to examine dynamics of protein distribution or report on spatiotemporal location of signalling molecules are well-established, tools for the dissection of metabolism in single living cells are less common. Advances in Raman spectroscopy, such as stimulated Raman scattering (SRS), are beginning to offer new insights into metabolic events in a range of experimental systems, including model organisms and clinical samples, and across a range of disciplines. Despite the power of Raman imaging, it remains a relatively under-used technique to approach biological problems, in part because of the specialised nature of the analysis. To raise the profile of this method, here we consider some key studies which illustrate how Raman spectroscopy has revealed new insights into fatty acid and lipid metabolism across a range of cellular systems. The powerful and non-invasive nature of this approach offers a new suite of tools for biomolecular scientists to address how metabolic events within cells informs on or underpins biological function. We illustrate potential biological applications, discuss some recent advances, and offer a direction of travel for metabolic research in this area.


Assuntos
Ácidos Graxos , Metabolismo dos Lipídeos , Análise Espectral Raman , Análise Espectral Raman/métodos , Ácidos Graxos/metabolismo , Ácidos Graxos/análise , Humanos , Animais
4.
Anal Chem ; 95(18): 7244-7253, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37097612

RESUMO

Hyperspectral stimulated Raman scattering (SRS) microscopy is a robust imaging tool for the analysis of biological systems. Here, we present a unique perspective, a label-free spatiotemporal map of mitosis, by integrating hyperspectral SRS microscopy with advanced chemometrics to assess the intrinsic biomolecular properties of an essential process of mammalian life. The application of spectral phasor analysis to multiwavelength SRS images in the high-wavenumber (HWN) region of the Raman spectrum enabled the segmentation of subcellular organelles based on innate SRS spectra. Traditional imaging of DNA is primarily reliant on using fluorescent probes or stains which can affect the biophysical properties of the cell. Here, we demonstrate the label-free visualization of nuclear dynamics during mitosis coupled with an evaluation of its spectral profile in a rapid and reproducible manner. These results provide a snapshot of the cell division cycle and chemical variability between intracellular compartments in single-cell models, which is central to understanding the molecular foundations of these fundamental biological processes. The evaluation of HWN images by phasor analysis also facilitated the differentiation between cells in separate phases of the cell cycle based solely on their nuclear SRS spectral signal, which offers an interesting label-free approach in combination with flow cytometry. Therefore, this study demonstrates that SRS microscopy combined with spectral phasor analysis is a valuable method for detailed optical fingerprinting at the subcellular level.


Assuntos
Mitose , Microscopia Óptica não Linear , Animais , Microscopia Óptica não Linear/métodos , Microscopia , Núcleo Celular , Análise Espectral Raman/métodos , Mamíferos
5.
Anal Chem ; 95(12): 5369-5376, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36926851

RESUMO

Carboxylesterases (CEs) are a class of enzymes that catalyze the hydrolysis of esters in a variety of endogenous and exogenous molecules. CEs play an important role in drug metabolism, in the onset and progression of disease, and can be harnessed for prodrug activation strategies. As such, the regulation of CEs is an important clinical and pharmaceutical consideration. Here, we report the first ratiometric sensor for CE activity using Raman spectroscopy based on a bisarylbutadiyne scaffold. The sensor was shown to be highly sensitive and specific for CE detection and had low cellular cytotoxicity. In hepatocyte cells, the ratiometric detection of esterase activity was possible, and the result was validated by multimodal imaging with standard viability stains used for fluorescence microscopy within the same cell population. In addition, we show that the detection of localized ultraviolet damage in a mixed cell population was possible using stimulated Raman scattering microscopy coupled with spectral phasor analysis. This sensor demonstrates the practical advantages of low molecular weight sensors that are detected using ratiometric Raman imaging and will have applications in drug discovery and biomedical research.


Assuntos
Esterases , Análise Espectral Raman , Análise Espectral Raman/métodos , Microscopia de Fluorescência
6.
Analyst ; 148(14): 3247-3256, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37366648

RESUMO

Glioblastoma multiforme (GBM) is a particularly aggressive and high-grade brain cancer, with poor prognosis and life expectancy, in urgent need of novel therapies. These severe outcomes are compounded by the difficulty in distinguishing between cancerous and non-cancerous tissues using conventional imaging techniques. Metallic nanoparticles (NPs) are advantageous due to their diverse optical and physical properties, such as their targeting and imaging potential. In this work, the uptake, distribution, and location of silica coated gold nanoparticles (AuNP-SHINs) within multicellular tumour spheroids (MTS) derived from U87-MG glioblastoma cells was investigated by surface enhanced Raman scattering (SERS) optical mapping. MTS are three-dimensional in vitro tumour mimics that represent a tumour in vivo much more closely than that of a two-dimensional cell culture. By using AuNP-SHIN nanotags, it is possible to readily functionalise the inner gold surface with a Raman reporter, and the outer silica surface with an antibody for tumour specific targeting. The nanotags were designed to target the biomarker tenascin-C overexpressed in U87-MG glioblastoma cells. Immunochemistry indicated that tenascin-C was upregulated within the core of the MTS, however limitations such as NP size, quiescence, and hypoxia, restricted the penetration of the nanotags to the core and they remained in the outer proliferating cells of the spheroids. Previous examples of MTS studies using SERS demonstrated the incubation of NPs on a 2D monolayer of cells, with the subsequent formation of the MTS from these pre-incubated cells. Here, we focus on the localisation of the NPs after incubation into pre-formed MTS to establish a better understanding of targeting and NP uptake. Therefore, this work highlights the importance for the investigation and translation of NP uptake into these 3D in vitro models.


Assuntos
Glioblastoma , Nanopartículas Metálicas , Humanos , Análise Espectral Raman/métodos , Nanopartículas Metálicas/química , Tenascina , Ouro/química , Esferoides Celulares , Dióxido de Silício/química
7.
Inorg Chem ; 62(5): 1827-1832, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35512336

RESUMO

The host-guest chemistry of coordination cages continues to promote significant interest, not least because confinement effects can be exploited for a range of applications, such as drug delivery, sensing, and catalysis. Often a fundamental analysis of noncovalent encapsulation is required to provide the necessary insight into the design of better functional systems. In this paper, we demonstrate the use of various techniques to probe the host-guest chemistry of a novel Pd2L4 cage, which we show is preorganized to selectively bind dicyanoarene guests with high affinity through hydrogen-bonding and other weak interactions. In addition, we exemplify the use of Raman spectroscopy as a tool for analyzing coordination cages, exploiting alkyne and nitrile reporter functional groups that are contained within the host and guest, respectively.

8.
Angew Chem Int Ed Engl ; 62(48): e202311530, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37821742

RESUMO

Multiplex optical detection in live cells is challenging due to overlapping signals and poor signal-to-noise associated with some chemical reporters. To address this, the application of spectral phasor analysis to stimulated Raman scattering (SRS) microscopy for unmixing three bioorthogonal Raman probes within cells is reported. Triplex detection of a metallacarborane using the B-H stretch at 2480-2650 cm-1 , together with a bis-alkyne and deuterated fatty acid can be achieved within the cell-silent region of the Raman spectrum. When coupled to imaging in the high-wavenumber region of the cellular Raman spectrum, nine discrete regions of interest can be spectrally unmixed from the hyperspectral SRS dataset, demonstrating a new capability in the toolkit of multiplexed Raman imaging of live cells.


Assuntos
Ácidos Graxos , Microscopia Óptica não Linear , Microscopia Óptica não Linear/métodos , Microscopia , Análise Espectral Raman/métodos
9.
Anal Chem ; 94(25): 8899-8908, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35699644

RESUMO

Hyperspectral stimulated Raman scattering (SRS) microscopy is a powerful imaging modality for the analysis of biological systems. Here, we report the application of k-means cluster analysis (KMCA) of multi-wavelength SRS images in the high-wavenumber region of the Raman spectrum as a robust and reliable method for the segmentation of cellular organelles based on the intrinsic SRS spectrum. KMCA has been applied to the study of the endogenous lipid biochemistry of prostate cancer and prostate healthy cell models, while the corresponding SRS spectrum of the lipid droplet (LD) cluster enabled direct comparison of their composition. The application of KMCA in visualizing the LD content of prostate cell models following the inhibition of de novo lipid synthesis (DNL) using the acetyl-coA carboxylase inhibitor, 5-(tetradecyloxy)-2-furoic acid (TOFA), is demonstrated. This method identified a reliance of prostate cancer cell models upon DNL for metabolic requirements, with a significant reduction in the cellular LD content after treatment with TOFA, which was not observed in normal prostate cell models. SRS imaging combined with KMCA is a robust method for investigating drug-cell interactions in a label-free manner.


Assuntos
Gotículas Lipídicas , Neoplasias da Próstata , Humanos , Gotículas Lipídicas/química , Lipídeos/análise , Masculino , Análise Multivariada , Microscopia Óptica não Linear/métodos , Próstata/química , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Análise Espectral Raman/métodos
10.
Angew Chem Int Ed Engl ; 61(34): e202204788, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35704518

RESUMO

Recent advances in optical bioimaging have prompted the need for minimal chemical reporters that can retain the molecular recognition properties and activity profiles of biomolecules. As a result, several methodologies to reduce the size of fluorescent and Raman labels to a few atoms (e.g., single aryl fluorophores, Raman-active triple bonds and isotopes) and embed them into building blocks (e.g., amino acids, nucleobases, sugars) to construct native-like supramolecular structures have been described. The integration of small optical reporters into biomolecules has also led to smart molecular entities that were previously inaccessible in an expedite manner. In this article, we review recent chemical approaches to synthesize miniaturized optical tags as well as some of their multiple applications in biological imaging.


Assuntos
Corantes Fluorescentes , Imagem Óptica , Aminoácidos , Corantes Fluorescentes/química
11.
Anal Chem ; 93(37): 12786-12792, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34505518

RESUMO

Mitochondrial pH (pHmito) is intimately related to mitochondrial function, and aberrant values for pHmito are linked to several disease states. We report the design, synthesis, and application of mitokyne 1-the first small molecule pHmito sensor for stimulated Raman scattering (SRS) microscopy. This ratiometric probe can determine subtle changes in pHmito in response to external stimuli and the inhibition of both the electron transport chain and ATP synthase with small molecule inhibitors. In addition, 1 was also used to monitor mitochondrial dynamics in a time-resolved manner with subcellular spatial resolution during mitophagy providing a powerful tool for dissecting the molecular and cell biology of this critical organelle.


Assuntos
Mitocôndrias , Mitofagia , Concentração de Íons de Hidrogênio , Microscopia , Análise Espectral Raman
12.
Angew Chem Int Ed Engl ; 60(14): 7637-7642, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33491852

RESUMO

Sucrose is the main saccharide used for long-distance transport in plants and plays an essential role in energy metabolism; however, there are no analogues for real-time imaging in live cells. We have optimised a synthetic approach to prepare sucrose analogues including very small (≈50 Da or less) Raman tags in the fructose moiety. Spectroscopic analysis identified the alkyne-tagged compound 6 as a sucrose analogue recognised by endogenous transporters in live cells and with higher Raman intensity than other sucrose derivatives. Herein, we demonstrate the application of compound 6 as the first optical probe to visualise real-time uptake and intracellular localisation of sucrose in live plant cells using Raman microscopy.


Assuntos
Azidas/química , Cumarínicos/química , Indicadores e Reagentes/química , Proteínas de Membrana Transportadoras/química , Células Vegetais/metabolismo , Proteínas de Plantas/química , Sacarose/análise , Sacarose/metabolismo , Alcinos/química , Permeabilidade da Membrana Celular , Cinética , Proteínas de Membrana Transportadoras/genética , Metaboloma , Microscopia , Proteínas de Plantas/genética , Análise Espectral Raman , Leveduras/genética
13.
Analyst ; 145(15): 5289-5298, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32672252

RESUMO

Intracellular pH (pHi) homeostasis is intertwined with a myriad of normal cellular behaviors as well as pathological processes. As such, small molecule probes for the measurement of pHi are invaluable tools for chemical biology, facilitating the study of the role of pH in cellular function and disease. The field of small molecule pHi sensors has traditionally been dominated with probes based on fluorescent scaffolds. In this study, a series of low molecular weight (<260) oligoyne compounds have been developed which exhibit pH sensitive alkyne stretching frequencies (νalkyne) in Raman spectroscopy. The modular design of the compounds enabled tuneability of their pKa(H) through simple structural modification, such that continuous pH sensitivity is achieved over the range 2-10. Alkyne stretching bands reside in the 'cell-silent' region of the Raman spectrum (1800-2600 cm-1) and are readily detectable in a cellular environment with subcellular spatial resolution. This enabled the application of a pH sensitive oligoyne compound to the ratiometric sensing of pHi in prostate cancer (PC3) cells in response to drug treatment. We propose that probes based on Alkyne Tag Raman Imaging offer an entirely new platform for the sensing of pHi, complementary to fluorescence microscopy.


Assuntos
Alcinos , Análise Espectral Raman , Corantes Fluorescentes , Concentração de Íons de Hidrogênio , Espaço Intracelular , Microscopia de Fluorescência
14.
Faraday Discuss ; 220(0): 71-85, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31531436

RESUMO

Raman spectroscopy is well-suited to the study of bioorthogonal reaction processes because it is a non-destructive technique, which employs relatively low energy laser irradiation, and water is only very weakly scattered in the Raman spectrum enabling live cell imaging. In addition, Raman spectroscopy allows species-specific label-free visualisation; chemical contrast may be achieved when imaging a cell in its native environment without fixatives or stains. Combined with the rapid advances in the field of Raman imaging over the last decade, particularly in stimulated Raman spectroscopy (SRS), this technique has the potential to revolutionise our mechanistic understanding of the biochemical and medicinal chemistry applications of bioorthogonal reactions. Current approaches to the kinetic analysis of bioorthogonal reactions (including heat flow calorimetry, UV-vis spectroscopy, fluorescence, IR, NMR and MS) have a number of practical shortcomings for intracellular applications. We highlight the advantages offered by Raman microscopy for reaction analysis in the context of both established and emerging bioorthogonal reactions, including the copper(i) catalysed azide-alkyne cycloaddition (CuAAC) click reaction and Glaser-Hay coupling.


Assuntos
Alcinos/química , Azidas/química , Cobre/química , Catálise , Reação de Cicloadição , Cinética , Estrutura Molecular , Análise Espectral Raman
15.
Biochim Biophys Acta Mol Cell Res ; 1871(1): 119575, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37689141

RESUMO

Metabolism of endothelial cells (ECs) depends on the availability of the energy substrates. Since the endothelium is the first line of defence against inflammation in the cardiovascular system and its dysfunction can lead to the development of cardiovascular diseases, it is important to understand how glucose metabolism changes during inflammation. In this work, glucose uptake was studied in human microvascular endothelial cells (HMEC-1) in high glucose (HG), and additionally in an inflammatory state, using Raman imaging. HG state was induced by incubation of ECs with a deuterated glucose analogue, while the EC inflammation was caused by TNF-α pre-treatment. Spontaneous and stimulated Raman scattering spectroscopy provided comprehensive information on biochemical changes, including lipids and the extent of unsaturation induced by excess glucose in ECs., induced by excess glucose in ECs. In this work, we indicated spectroscopic markers of metabolic changes in ECs as a strong increase in the ratio of the intensity of lipids / (proteins + lipids) bands and an increase in the level of lipid unsaturation and mitochondrial changes. Inflamed ECs treated with HG, revealed enhanced glucose uptake, and intensified lipid production i.a. of unsaturated lipids. Additionally, increased cytochrome c signal in the mitochondrial region indicated higher mitochondrial activity and biogenesis. Raman spectroscopy is a powerful method for determining the metabolic markers of ED which will better inform understanding of disease onset, development, and treatment.


Assuntos
Glucose , Microscopia , Humanos , Glucose/metabolismo , Células Endoteliais/metabolismo , Metabolismo dos Lipídeos , Inflamação/metabolismo , Lipídeos
16.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(5): 159496, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649008

RESUMO

This work aims to understand better the mechanism of cellular processes accompanying the activation of human T cells and to develop a novel, fast, label-free approach to identify molecular biomarkers for this process. The standard methodology for confirming the activation state of T cells is based on flow cytometry and using antibodies recognizing activation markers. The method provide high specificity detection but may be susceptible to background staining or non-specific secondary antibody reactions. Here, we evaluated the potential of Raman-based molecular imaging in distinguishing non-activated and activated human T cells. Confocal Raman microscopy was performed on T cells followed by chemometrics to obtain comprehensive molecular information, while Stimulated Raman Scattering imaging was used to quickly provide high-resolution images of selected cellular components of activated and non-activated cells. For the first time, carotenoids, lipids, and proteins were shown to be important biomarkers of T-cell activation. We found that T-cell activation was accompanied by lipid accumulation and loss of carotenoid content. Our findings on the biochemical, morphological, and structural changes associated with activated mature T cells provide insights into the molecular changes that occur during therapeutic manipulation of the immune response. The methodology for identifying activated T cells is based on a novel imaging method and supervised and unsupervised chemometrics. It unambiguously identifies specific and unique molecular changes without the need for staining, fixation, or any other sample preparation.


Assuntos
Biomarcadores , Carotenoides , Metabolismo dos Lipídeos , Ativação Linfocitária , Análise Espectral Raman , Linfócitos T , Humanos , Carotenoides/metabolismo , Ativação Linfocitária/imunologia , Linfócitos T/metabolismo , Linfócitos T/imunologia , Análise Espectral Raman/métodos , Biomarcadores/metabolismo , Proteínas/metabolismo
17.
Adv Sci (Weinh) ; 11(9): e2308686, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38145971

RESUMO

Arterial Vascular smooth muscle cells (VSMCs) play a central role in the onset and progression of atherosclerosis. Upon exposure to pathological stimuli, they can take on alternative phenotypes that, among others, have been described as macrophage like, or foam cells. VSMC foam cells make up >50% of all arterial foam cells and have been suggested to retain an even higher proportion of the cell stored lipid droplets, further leading to apoptosis, secondary necrosis, and an inflammatory response. However, the mechanism of VSMC foam cell formation is still unclear. Here, it is identified that mechanical stimulation through hypertensive pressure alone is sufficient for the phenotypic switch. Hyperspectral stimulated Raman scattering imaging demonstrates rapid lipid droplet formation and changes to lipid metabolism and changes are confirmed in ABCA1, KLF4, LDLR, and CD68 expression, cell proliferation, and migration. Further, a mechanosignaling route is identified involving Piezo1, phospholipid, and arachidonic acid signaling, as well as epigenetic regulation, whereby CUT&Tag epigenomic analysis confirms changes in the cells (lipid) metabolism and atherosclerotic pathways. Overall, the results show for the first time that VSMC foam cell formation can be triggered by mechanical stimulation alone, suggesting modulation of mechanosignaling can be harnessed as potential therapeutic strategy.


Assuntos
Aterosclerose , Células Espumosas , Humanos , Células Espumosas/metabolismo , Células Espumosas/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/patologia , Transdiferenciação Celular , Epigênese Genética , Aterosclerose/genética
18.
Biosens Bioelectron ; 230: 115234, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36989660

RESUMO

A relatively new approach to subcellular research is Raman microscopy with the application of sensors called Raman probes. This paper describes the use of the sensitive and specific Raman probe, 3-O-propargyl-d-glucose (3-OPG), to track metabolic changes in endothelial cells (ECs). ECs play a significant role in a healthy and dysfunctional state, the latter is correlated with a range of lifestyle diseases, particularly with cardiovascular disorders. The metabolism and glucose uptake may reflect the physiopathological conditions and cell activity correlated with energy utilization. To study metabolic changes at the subcellular level the glucose analogue, 3-OPG was used, which shows a characteristic and intense Raman band at 2124 cm-1.3-OPG was applied as a sensor to track both, its accumulation in live and fixed ECs and then metabolism in normal and inflamed ECs, by employing two spectroscopic techniques, i.e. spontaneous and stimulated Raman scattering microscopies. The results indicate that 3-OPG is a sensitive sensor to follow glucose metabolism, manifested by the Raman band of 1602 cm-1. The 1602 cm-1 band has been called the "Raman spectroscopic signature of life" in the cell literature, and here we demonstrate that it is attributed to glucose metabolites. Additionally, we have shown that glucose metabolism and its uptake are slowed down in the cellular inflammation. We showed that Raman spectroscopy can be classified as metabolomics, and its uniqueness lies in the fact that it allows the analysis of the processes of a single living cell. Gaining further knowledge on metabolic changes in the endothelium, especially in pathological conditions, may help in identifying markers of cellular dysfunction, and more broadly in cell phenotyping, better understanding of the mechanism of disease development and searching for new treatments.


Assuntos
Técnicas Biossensoriais , Análise Espectral Raman , Análise Espectral Raman/métodos , Células Endoteliais/metabolismo , Glucose/metabolismo , Microscopia
19.
RSC Chem Biol ; 3(9): 1154-1164, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36128503

RESUMO

Stimulated Raman scattering (SRS) microscopy is a powerful technique for visualising the cellular uptake and distribution of drugs and small molecules in live cells under biocompatible imaging conditions. The use of bio-orthogonal groups within the drug molecule, including alkynes and nitriles, has enabled the direct detection of a plethora of bioactive molecules in a minimally perturbative fashion. Limited progress has been made towards real-time detection of drug uptake and distribution into live cells under physiological conditions, despite the accordant potential it presents for preclinical drug development. SRS microscopy has been applied to the study of cellular dynamics of the drug 7RH, which is a potent inhibitor of dicoidin domain receptor 1 (DDR1) and prevents cellular adhesion, proliferation and migration in vitro. The uptake of 7RH into a variety of mammalian cell models was shown to be independent of DDR1 expression. Using a perfusion chamber, the recurrent treatment of live cancer cells was achieved, enabling 7RH uptake to be visualised in real-time using SRS microscopy, after which the viability of the same cellular population was assessed using commercially available fluorescent markers in a multimodal imaging experiment. The effect of 7RH treatment in combination with the chemotherapeutic, cisplatin was investigated using sequential perfusion and time-lapse imaging in the same live cell population, to demonstrate the application of the approach. SRS microscopy also identified potent inhibition of cellular adhesion and migration in breast cancer cell models with increasing 7RH treatment concentrations, thus representing a novel read-out methodology for phenotypic assays of this kind. The direct assessment of drug-cell interactions under physiological conditions offers significant potential for the preclinical drug development process.

20.
Cancers (Basel) ; 14(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35326686

RESUMO

Optical techniques are widely used tools in the visualisation of biological species within complex matrices, including biopsies, tissue resections and biofluids. Raman spectroscopy is an emerging analytical approach that probes the molecular signature of endogenous cellular biomolecules under biocompatible conditions with high spatial resolution. Applications of Raman spectroscopy in prostate cancer include biopsy analysis, assessment of surgical margins and monitoring of treatment efficacy. The advent of advanced Raman imaging techniques, such as stimulated Raman scattering, is creating opportunities for real-time in situ evaluation of prostate cancer. This review provides a focus on the recent preclinical and clinical achievements in implementing Raman-based techniques, highlighting remaining challenges for clinical applications. The research and clinical results achieved through in vivo and ex vivo Raman spectroscopy illustrate areas where these evolving technologies can be best translated into clinical practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA