Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Sensors (Basel) ; 22(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35161870

RESUMO

Optical fibers are being widely utilized as radiation sensors and dosimeters. Benefiting from the rapidly growing optical fiber manufacturing and material engineering, advanced optical fibers have evolved significantly by using functional structures and materials, promoting their detection accuracy and usage scenarios as radiation sensors. This paper summarizes the current development of optical fiber-based radiation sensors. The sensing principles of both extrinsic and intrinsic optical fiber radiation sensors, including radiation-induced attenuation (RIA), radiation-induced luminescence (RIL), and fiber grating wavelength shifting (RI-GWS), were analyzed. The relevant advanced fiber materials and structures, including silica glass, doped silica glasses, polymers, fluorescent and scintillator materials, were also categorized and summarized based on their characteristics. The fabrication methods of intrinsic all-fiber radiation sensors were introduced, as well. Moreover, the applicable scenarios from medical dosimetry to industrial environmental monitoring were discussed. In the end, both challenges and perspectives of fiber-based radiation sensors and fiber-shaped radiation dosimeters were presented.


Assuntos
Fibras Ópticas , Radiometria , Vidro , Luminescência , Dosímetros de Radiação
2.
Sensors (Basel) ; 21(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069287

RESUMO

Thermoelectric technology can directly harvest the waste heat into electricity, which is a promising field of green and sustainable energy. In this aspect, flexible thermoelectrics (FTE) such as wearable fabrics, smart biosensing, and biomedical electronics offer a variety of applications. Since the nanofibers are one of the important constructions of FTE, inorganic thermoelectric fibers are focused on here due to their excellent thermoelectric performance and acceptable flexibility. Additionally, measurement and microstructure characterizations for various thermoelectric fibers (Bi-Sb-Te, Ag2Te, PbTe, SnSe and NaCo2O4) made by different fabrication methods, such as electrospinning, two-step anodization process, solution-phase deposition method, focused ion beam, and self-heated 3ω method, are detailed. This review further illustrates that some techniques, such as thermal drawing method, result in high performance of fiber-based thermoelectric properties, which can emerge in wearable devices and smart electronics in the near future.

3.
Sensors (Basel) ; 20(12)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560254

RESUMO

We present here the recent advance in exploring new detection mechanisms, materials, processes, and applications of fiber optic sensors.

4.
Sensors (Basel) ; 20(7)2020 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-32260585

RESUMO

Recently, carbon allotropes have received tremendous research interest and paved a new avenue for optical fiber sensing technology. Carbon allotropes exhibit unique sensing properties such as large surface to volume ratios, biocompatibility, and they can serve as molecule enrichers. Meanwhile, optical fibers possess a high degree of surface modification versatility that enables the incorporation of carbon allotropes as the functional coating for a wide range of detection tasks. Moreover, the combination of carbon allotropes and optical fibers also yields high sensitivity and specificity to monitor target molecules in the vicinity of the nanocoating surface. In this review, the development of carbon allotropes-based optical fiber sensors is studied. The first section provides an overview of four different types of carbon allotropes, including carbon nanotubes, carbon dots, graphene, and nanodiamonds. The second section discusses the synthesis approaches used to prepare these carbon allotropes, followed by some deposition techniques to functionalize the surface of the optical fiber, and the associated sensing mechanisms. Numerous applications that have benefitted from carbon allotrope-based optical fiber sensors such as temperature, strain, volatile organic compounds and biosensing applications are reviewed and summarized. Finally, a concluding section highlighting the technological deficiencies, challenges, and suggestions to overcome them is presented.


Assuntos
Técnicas Biossensoriais , Nanodiamantes/química , Nanotubos de Carbono/química , Fibras Ópticas , Grafite/química , Humanos , Nanoestruturas/química , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/isolamento & purificação
5.
Sensors (Basel) ; 20(11)2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32521770

RESUMO

With the increasing demand of achieving comprehensive perception in every aspect of life, optical fibers have shown great potential in various applications due to their highly-sensitive, highly-integrated, flexible and real-time sensing capabilities. Among various sensing mechanisms, plasmonics based fiber-optic sensors provide remarkable sensitivity benefiting from their outstanding plasmon-matter interaction. Therefore, surface plasmon resonance (SPR) and localized SPR (LSPR)-based hybrid fiber-optic sensors have captured intensive research attention. Conventionally, SPR- or LSPR-based hybrid fiber-optic sensors rely on the resonant electron oscillations of thin metallic films or metallic nanoparticles functionalized on fiber surfaces. Coupled with the new advances in functional nanomaterials as well as fiber structure design and fabrication in recent years, new solutions continue to emerge to further improve the fiber-optic plasmonic sensors' performances in terms of sensitivity, specificity and biocompatibility. For instance, 2D materials like graphene can enhance the surface plasmon intensity at the metallic film surface due to the plasmon-matter interaction. Two-dimensional (2D) morphology of transition metal oxides can be doped with abundant free electrons to facilitate intrinsic plasmonics in visible or near-infrared frequencies, realizing exceptional field confinement and high sensitivity detection of analyte molecules. Gold nanoparticles capped with macrocyclic supramolecules show excellent selectivity to target biomolecules and ultralow limits of detection. Moreover, specially designed microstructured optical fibers are able to achieve high birefringence that can suppress the output inaccuracy induced by polarization crosstalk and meanwhile deliver promising sensitivity. This review aims to reveal and explore the frontiers of such hybrid plasmonic fiber-optic platforms in various sensing applications.

6.
Sensors (Basel) ; 18(10)2018 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-30274318

RESUMO

We demonstrate a simple-to-fabricate refractometer based on the inscription of fiber Bragg gratings in a special C-shaped optical fiber. The C-shaped fiber was drawn into shape using a quarter cladding removed preform of a commercial standard single-mode fiber by simple machining. The sensor did not suffer from cross-sensitivity of the refractive index with ambient temperature fluctuations, commonly occurring with many optical fiber refractometers. A refractive index sensitivity of 1300 pm per refractive index unit (RIU) was achieved without employing any additional sensitization techniques such as tapering or etching.

7.
Sensors (Basel) ; 18(6)2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29874788

RESUMO

We present a novel superstructure fiber Bragg grating fiber end sensor capable of detecting variations in refractive index (RI) of liquids and potentially that of gases, and demonstrated an application in the detection of heavy metal ions in water. The sensor is capable of sensing RI variations in the range of 1.333 to 1.470 with good sensitivity of up to 230 dB/RIU achieved for the RI range of 1.370 to 1.390. The sensor is capable of simultaneously measuring variations in ambient temperature along with RI. A simple chemical coating was employed as a chelating agent for heavy metal ion detection at the fiber end to demonstrate an possible application of the sensor. The coated fiber sensor can conclusively detect the presence of heavy metal ions with concentrations upwards of 100 ppm. RI sensing capability of the sensor is neither affected by temperature nor strain and is both robust and easily reproducible.

8.
Opt Lett ; 38(20): 4070-3, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24321925

RESUMO

We report on the fabrication of a fiber Bragg grating (FBG) with multiple resonances in a two-dimensional waveguide array microstructured optical fiber containing 91 cores. Theoretical investigation reveals that these resonances originate from the identical and nonidentical mode couplings between forward-propagating and backward-propagating LP0m-like (m=1, 2, 3; LP refers to linearly polarized) supermodes. Since both the central wavelength and minimum transmission of these resonant dips respond differently to curvature and axial strain, this FBG can be applied in the simultaneous measurement of curvature and axial strain.

9.
Sensors (Basel) ; 13(10): 14055-63, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24141267

RESUMO

We demonstrate a refractive index sensor based on a long period grating (LPG) inscribed in a special photosensitive microfiber with double-clad profile. The fiber is tapered gradually enough to ensure the adiabaticity of the fiber taper. In other words, the resulting insertion loss is sufficiently small. The boron and germanium co-doped inner cladding makes it suitable for inscribing gratings into its tapered form. The manner of wavelength shift for refractive indices (RIs) differs from conventional LPG, and the refractive index detection limit is 1.67 × 10⁻5.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Refratometria/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização
10.
Appl Opt ; 50(13): 1900-4, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21532672

RESUMO

Frequency tunable microwave signal generation, based on a dual-wavelength single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, incorporating a phase-shifted fiber Bragg grating (PS-FBG) with two π-phase shifts, is demonstrated. In the proposed configuration, the PS-FBG with two ultranarrow transmission bands is embedded in a triangular cantilever to serve as a wavelength spacing tunable filter with a fixed center wavelength by applying various strains on the cantilever. A section of unpumped EDF is employed as a saturable absorber to ensure SLM operation in each of the two lasing lines. By beating the two wavelengths at a photodiode, a tunable microwave signal ranging from 8.835 to 24.360 GHz is successfully achieved.

11.
Opt Express ; 18(25): 26345-50, 2010 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-21164985

RESUMO

A fiber Bragg grating written in a photosensitive microfiber using KrF excimer laser via a uniform phase mask is demonstrated. We have successfully fabricated two Bragg gratings in microfibers having different diameters. In the reflection spectrum of a microfiber Bragg grating (MFBG), we observed two reflection peaks,which agrees with our numerical simulation results. Compared with the fundamental mode reflection, the higher-order reflection mode is more sensitive to the refractive index (RI) variation of the surrounding fluid due to its larger evanescent field. The measured maximum sensitivity is ~102 nm/RIU (RI unit) at an RI value of 1.378 in an MFBG with a diameter of 6 µm.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Refratometria/instrumentação , Transdutores , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização
12.
Appl Opt ; 49(32): 6232-5, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-21068853

RESUMO

An all-fiber sensor scheme for simultaneous strain and temperature measurement is presented. The sensing head is formed by serially connecting a polarization maintaining photonic-crystal-fiber-based inter-modal interferometer (IMI) with a fiber Bragg grating (FBG). The IMI, exhibiting an opposite strain response as compared to that of the FBG, is highly sensitive to strain, while it is insensitive to temperature. This has potential for improving the strain and temperature measurement resolutions. A sensor resolution of ±8.3 µÎµ in strain and ±2 °C in temperature are experimentally achieved within a strain range of 0-957.6 µÎµ and a temperature range of 24 °C-64 °C, respectively.

13.
Appl Opt ; 49(8): 1373-7, 2010 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-20220894

RESUMO

A fiber Bragg grating (FBG) with an inverse-Gaussian apodization function is proposed and fabricated. It is shown that such a FBG possesses dual-wavelength narrow transmission peaks and the wavelength spacing between the two peaks is easily controllable during fabrication. Incorporating such a FBG filter into a fiber laser with a linear cavity, we obtain stable dual-wavelength emission with 0.146 nm wavelength spacing. This arrangement provides a simple and low cost way of achieving dual-wavelength fiber laser operation.

14.
Appl Opt ; 49(25): 4715-22, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20820212

RESUMO

Inverse-Gaussian apodized fiber Bragg gratings (IGAFBGs) are numerically studied using the transfer matrix method and fabricated by the commonly used phase-mask scanning technique in a single-step scanning process. The IGAFBG can serve as a dual-wavelength passband filter, whose wavelength spacing can be continuously tuned by introducing a tunable chirp through applying a strain gradient in principle. Also, an IGAFBG with identical dual passbands having 0.144nm wavelength spacing is experimentally achieved. We also show that an IGAFBG can act as a multipassband filter with varied free spectral ranges (FSRs), and the largest FSR variation of this IGAFBG is nearly seven times more than that in a comparable FBG pair filter. An IGAFBG with varied FSRs of approximately 16.125, approximately 12.25, approximately 8.5, and approximately 6.375GHz is fabricated. This multipassband varying-FSR IGAFBG filter can find applications in step-tunable microwave generations.

15.
Appl Opt ; 49(36): 6855-60, 2010 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-21173817

RESUMO

We present a stable and switchable dual-wavelength erbium-doped fiber laser. In the ring cavity, an inverse-Gaussian apodized fiber Bragg grating serves as an ultranarrow dual-wavelength passband filter, a semiconductor optical amplifier biased in the low-gain regime reduces the gain competition of the two wavelengths, and a feedback fiber loop acts as a mode filter to guarantee a stable single-longitudinal-mode operation. Two lasing lines with a wavelength separation of approximately 0.1 nm are obtained experimentally. A microwave signal at 12.51 GHz is demonstrated by beating the dual wavelengths at a photodetector.

16.
Ann Biomed Eng ; 48(1): 342-356, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31485875

RESUMO

Haptic feedback for flexible endoscopic surgical robots is challenging due to space constraints for sensors and shape-dependent force hysteresis of tendon-sheath mechanisms (TSMs). This paper proposes (1) a single-axis fiber Bragg grating (FBG)-based force sensor for a TSM of a robotic arm and (2) an integrated sensor-model approach to estimate forces on other TSMs of that arm. With a robust and simple structure, a temperature-compensated sensor can be mounted on the distal sheath to measure forces applied by the TSM. This proposed sensor was integrated with a Ø4.2 mm articulated robotic arm driven by six TSMs, with a measurement error of 0.37 N in this work. The measurement from the single sensor was used to identify parameters in the force-transmission models of all other TSMs in the robot, realizing a one-sensor-for-all-distal-forces measurement method. The sensor-model approach could accurately estimate the distal force with an RMSE of 0.65 N. An animal study was carried out to demonstrate the sensor's feasibility in real-life surgery. The sensor-model approach presented a robust, space-saving, and cost-effective solution for haptic feedback of endoscopic robots without any assumption on the shapes of the robot.


Assuntos
Endoscopia/instrumentação , Retroalimentação , Robótica , Animais , Colo/cirurgia , Suínos
17.
Biomed Microdevices ; 11(3): 653-61, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19130240

RESUMO

A simple microfluidic immunoassay card was developed based on polystyrene (PS) substrate for the detection of horse IgG, an inexpensive model analyte using fluorescence microscope. The primary antibody was captured onto the PS based on covalent bonding via a self-assembled monolayer (SAM) of thiol to pattern the surface chemistry on a gold-coated PS. The immunosensor chip layers were fabricated from sheets by CO(2) laser ablation. The functionalized PS surfaces after each step were characterized by contact angle measurement, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). After the antibody-antigen interaction as a sandwich immunoassay with a fluorescein isothiocyanate (FITC)-conjugated secondary antibody, the intensity of fluorescence was measured on-chip to determine the concentration of the target analyte. The present immunosensor chip showed a linear response range for horse IgG between 1 microg/ml and 80 microg/ml (r = 0.971, n = 3). The detection limit was found to be 0.71 microg/ml. The developed microfluidic system can be extended for various applications including medical diagnostics, microarray detection and observing protein-protein interactions.


Assuntos
Anticorpos Imobilizados/imunologia , Técnicas Biossensoriais/instrumentação , Cavalos/imunologia , Imunoglobulina G/análise , Poliestirenos/química , Animais , Anticorpos Imobilizados/metabolismo , Materiais Revestidos Biocompatíveis/química , Desenho de Equipamento , Fluoresceína/metabolismo , Corantes Fluorescentes/metabolismo , Ouro/química , Imunoensaio/instrumentação , Imunoensaio/métodos , Microfluídica/instrumentação , Microfluídica/métodos , Microscopia de Força Atômica , Modelos Imunológicos , Análise Espectral/métodos , Especificidade por Substrato , Propriedades de Superfície
18.
Methods Mol Biol ; 503: 403-22, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19151955

RESUMO

In life sciences, the problem of very small volume of sample, analytes, and reagents is often faced. Micro-fluidic technology is ideal for handling costly and difficult-to-obtain samples, analytes, and reagents, because it requires very small volume of samples, in order of microL or even nL. Among many types of optical techniques commonly used for biosensing in microfluidic chip, fluorescence detection technique is the most common. The standard free-space detection techniques used to detect fluorescence emission from microfluidic channel often suffer issues like scattering noise, crosstalks, misalignment, autofluorescence of substrate, and low collection efficiency. This chapter describes two fluorescence detection methods, based on in-fiber microchannels and in-fiber grooves, which can solve those problems, as the techniques integrate the excitation and emission light paths, and the sensing part. Utilizing an optical fiber as a sensing component makes these detection techniques suitable for lab-on-a-chip or microTAS applications.


Assuntos
Técnicas Biossensoriais/instrumentação , Tecnologia de Fibra Óptica/instrumentação , Análise de Injeção de Fluxo/instrumentação , Iluminação/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Espectrometria de Fluorescência/instrumentação , Técnicas Biossensoriais/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Análise de Injeção de Fluxo/métodos , Iluminação/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
ACS Appl Mater Interfaces ; 11(31): 28546-28553, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31309830

RESUMO

This work reports an interferometric optical microfiber sensor functionalized with nitrogen- and sulfur-codoped carbon dots (CDs) for the detection of ferric ions (Fe3+). Compared to other CD-based ferric ion sensors, the sensing mechanism of this presented sensor is dependent on the refractive index modulations due to selective Fe3+ adsorption onto the CD binding sites at the tapered region. This is the first study in which CD-based sensing was performed at the solid phase as a chelator, which does not rely on its fluorescence properties. The detection performance of the proposed sensor is not only comparable to a conventional fluorescence-based CD nanoprobe sensor but also capable of delivering quantitative analysis results and ease of translation to a sensor device for on-site detection. The presented sensor exhibits Fe3+ detection sensitivity of 0.0061 nm/(µg/L) in the linear detection range between 0 and 300 µg/L and a detection limit of 0.77 µg/L based on the Langmuir isotherm model. Finally, the potential use of the CD-functionalized optical microfiber sensor in the real environmental and biological Fe3+ monitoring applications has also been validated in this work.


Assuntos
Carbono/química , Compostos Férricos/análise , Fluorescência , Fibras Ópticas , Pontos Quânticos/química , Compostos Férricos/química , Interferometria , Luz , Limite de Detecção
20.
ACS Sens ; 3(12): 2506-2512, 2018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30421612

RESUMO

This study demonstrated a l-glutathione-modified nonadiabatic microfiber sensor to detect a trace level of heavy metal ions in aqueous solution. The sensor showed an exclusively selective response to Pb2+ among other metal ions and a measured detection limit of 5 µg/L, lower than the maximum allowable limit of Pb2+ in drinking water by the World Health Organization. Moreover, a novel compact all-fiber-based interrogation scheme was proposed to promote the development of a portable hand-held system for on-site measurement. The presented scheme does not require costly and bulky laboratory equipment but operates based on the reflected optical power of two fiber Bragg gratings (FBG), measured using photodetectors independently.


Assuntos
Interferometria/métodos , Chumbo/análise , Fibras Ópticas , Água Potável/análise , Glutationa/química , Concentração de Íons de Hidrogênio , Interferometria/instrumentação , Limite de Detecção , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA