Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Magn Magn Mater ; 400: 130-136, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29515286

RESUMO

UH3 is the first discovered material with ferromagnetism based purely on the 5f electronic states, known for more than half century. Although the U metal is Pauli paramagnet, the reduced 5f-5f overlap in compounds allows for moment formation and ordering, typically if the U-U spacing exceeds the Hill limit, i.e. about 340 pm. The stable form of UH3, known as ß-UH3, has rather high TC ≈ 170 K. Such high value is rather unusual, considering dU-U = 331 pm. Properties of metastable α-UH3 with dU-U = 360 pm could be never well established. Using the fact that α-UH3 is in fact bcc U with interstitials filled by H, we attempted to synthesize α-UH3 starting from the γ-U alloys, with the bcc structure retained to room temperature by doping combined with ultrafast cooling. While up to 15% Zr a contamination by ß-UH3 was obtained, 20% Zr yielded single phase α-UH3. The TC value remains high and very similar to ß-UH3. One can see an increase up to 187 K for 15% Zr, followed by a weak decrease. Magnetic moments remain close to 1 µB/U atom. An insight is provided by ab-initio calculations, revealing a a charge transfer towards H-1s states, depopulating the U-6d and 7s states, leaving almost pure 5f character around the Fermi level. The 5f magnetism exhibits a high coercivity (µ0Hc up to 5.5 T) and large spontaneous volume magnetostriction of 3.2*10-3. Even higher increase of TC, reaching up to 203 K, can be achieved in analogous Mo stabilized hydrides, which yield an amorphous structure. The compounds represent, together with known hydrides of U6Fe and U6Co, a new group of robust 5f ferromagnets with small dU-U but high TC. Although common hydrides are fine powders, some of the new hydrides described as (UH3)(1-x)T x (T = Zr or Mo) remain monolithic, which allows to study transport and thermodynamic properties.

2.
J Magn Reson ; 353: 107491, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37301045

RESUMO

ENDOR spectroscopy is a fundamental method to detect nuclear spins in the vicinity of paramagnetic centers and their mutual hyperfine interaction. Recently, site-selective introduction of 19F as nuclear labels has been proposed as a tool for ENDOR-based distance determination in biomolecules, complementing pulsed dipolar spectroscopy in the range of angstrom to nanometer. Nevertheless, one main challenge of ENDOR still consists of its spectral analysis, which is aggravated by a large parameter space and broad resonances from hyperfine interactions. Additionally, at high EPR frequencies and fields (⩾94 GHz/3.4 Tesla), chemical shift anisotropy might contribute to broadening and asymmetry in the spectra. Here, we use two nitroxide-fluorine model systems to examine a statistical approach to finding the best parameter fit to experimental 263 GHz 19F ENDOR spectra. We propose Bayesian optimization for a rapid, global parameter search with little prior knowledge, followed by a refinement by more standard gradient-based fitting procedures. Indeed, the latter suffer from finding local rather than global minima of a suitably defined loss function. Using a new and accelerated simulation procedure, results for the semi-rigid nitroxide-fluorine two and three spin systems lead to physically reasonable solutions, if minima of similar loss can be distinguished by DFT predictions. The approach also delivers the stochastic error of the obtained parameter estimates. Future developments and perspectives are discussed.

3.
J Phys Chem Lett ; 11(5): 1629-1635, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32003568

RESUMO

Polarization transfer efficiency in liquid-state dynamic nuclear polarization (DNP) depends on the interaction between polarizing agents (PAs) and target nuclei modulated by molecular motions. We show how translational and rotational diffusion differently affect the DNP efficiency. These contributions were disentangled by measuring 1H-DNP enhancements of toluene and chloroform doped with nitroxide derivatives at 0.34 T as a function of either the temperature or the size of the PA. The results were employed to analyze 13C-DNP data at higher fields, where the polarization transfer is also driven by the Fermi contact interaction. In this case, bulky nitroxide PAs perform better than the small TEMPONE radical due to structural fluctuations of the ring conformation. These findings will help in designing PAs with features specifically optimized for liquid-state DNP at various magnetic fields.

4.
Artigo em Inglês | MEDLINE | ID: mdl-28579737

RESUMO

Pure hydride of the α-UH3 type without any ß-UH3 admixture was prepared by high-pressure hydrogenation of bcc U stabilized by Zr. Such material, characterized by a general formula (UH3)1-x Zr x , is stable in air at ambient and elevated temperatures. H release is observed between 400-450 °C similar to ß-UH3. Its stability allowed to measure magnetic properties, specific heat, and electrical resistivity in a wide temperature range. Despite rather different crystal structure and inter-U spacing, the electronic properties are almost identical to ß-UH3. Its ferromagnetic ground state with Curie temperature TC ≈ 180 K (weakly and non-monotonously dependent on Zr concentration) and U moments of 1.0 µB indicate why mixtures of α- and ß-UH3 exhibited only one transition. Magnetic ordering leads to a large spontaneous magnetostriction ωs = 3.2*10-3, which can be explained by the increase of the spin moment between the paramagnetic (Disordered Local Moment) and the ferromagnetic state. The role of orbital moments in magnetism is indicated by fully relativistic electronic structure calculations.

5.
Khirurgiia (Mosk) ; (9): 33-5, 1997.
Artigo em Russo | MEDLINE | ID: mdl-9499132

RESUMO

The authors have carried out 296 transthoracic and endoscopic YAG-laser operations in various diseases of bronchopulmonary system. Sapphire and quartz applicator-tips were used as a contact scalpel. The procedures of laser operations with the use of the contact mode are described in detail and comparative evaluation of both types of thermal applicator-tips is given. The combination of cutting and coagulation properties of the contact laser scalpel enables its use in various operations on the lung and pleura including thoracoplastic interventions as well as accomplishment of an endoscopic photoresection of endobronchial tumors.


Assuntos
Terapia a Laser , Doenças Respiratórias/cirurgia , Procedimentos Cirúrgicos Torácicos/instrumentação , Endoscópios , Desenho de Equipamento , Humanos , Reprodutibilidade dos Testes , Resultado do Tratamento
6.
Magn Reson Chem ; 43 Spec no.: S153-65, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16235193

RESUMO

The designs of W-band (approximately 95 GHz) Fabry-Pérot microwave resonators for optically detected EPR and ENDOR using the magnetic circular dichroism of the optical absorption (MCDA) as well as for photo-luminescence-detected EPR are briefly described. We report on the first MCDA-detected high-field EPR/ENDOR investigation of the paramagnetic EL2+ defect in semi-insulating GaAs. The higher-order effects, which prevented the unambiguous analysis of previous MCDA-detected K-band EPR/ENDOR experiments could be suppressed in W-band. The analysis of the ENDOR spectra showed that an extremely precise alignment of the samples is necessary. The paramagnetic El2+ defect turned out to be an As antisite defect, which has four almost equivalent nearest 75As neighbours differing less than 1.5% in the superhyperfine interactions suggestive of an isolated As antisite, while the third 75As shell (fifth neighbour shell) is clearly of lower symmetry than expected for an isolated As antisite. We discuss as a possible solution to this paradoxical situation that EL2+ is an isolated antisite at room temperature, which at low temperature, where all magnetic resonance experiments are performed, associates itself with shallow acceptors such as Zn(Ga)- more than two nearest neighbour distances away. According to recent theoretical calculations, such 'loose' complexes with binding energies between 0.01 eV and 0.05 eV and disturb the equivalence of the nearest neighbour superhyperfine (shf) interactions less than 1.5%. Also, W-band EPR was measured using the photo-luminescence for detection to investigate P dopants in 6H-SiC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA