Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuromodulation ; 26(3): 620-628, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36307355

RESUMO

OBJECTIVES: Transcutaneous auricular vagus nerve stimulation (taVNS) is a promising treatment option for migraines. This study aims to investigate the modulation effects of different taVNS frequencies along the central vagus nerve pathway in migraineurs. MATERIALS AND METHODS: Twenty-four migraineurs were recruited for a single-blind, crossover magnetic resonance imaging (MRI) study. The study consisted of two taVNS MRI scan sessions, in which either 1-Hz or 20-Hz taVNS was applied in a random order. Seed-based static and dynamic functional connectivity (FC) analyses were performed using two key nodes of the vagus nerve pathway, the nucleus tractus solitarius (NTS) and the locus coeruleus (LC). RESULTS: Static FC (sFC) analysis showed that 1) continuous 1-Hz taVNS resulted in an increase of NTS/LC-occipital cortex sFC and a decrease of NTS-thalamus sFC compared with the pre-1-Hz taVNS resting state, 2) continuous 20-Hz taVNS resulted in an increase of the LC-anterior cingulate cortex (ACC) sFC compared with the pre-20-Hz taVNS resting state, 3) 1-Hz taVNS produced a greater LC-precuneus and LC-inferior parietal cortex sFC than 20 Hz, and 4) 20-Hz taVNS increased LC-ACC and LC-super temporal gyrus/insula sFC in comparison with 1 Hz. Dynamic FC (dFC) analysis showed that compared with the pre-taVNS resting state, 1-Hz taVNS decreased NTS-postcentral gyrus dFC (less variability), 20-Hz taVNS decreased dFC of the LC-superior temporal gyrus and the LC-occipital cortex. Finally, a positive correlation was found between the subjects' number of migraine attacks in the past four weeks and the NTS-thalamus sFC during pre-taVNS resting state. CONCLUSIONS: 1-Hz and 20-Hz taVNS may modulate the sFC and dFC of key nodes in the central vagus nerve pathway differently. Our findings highlight the importance of stimulation parameters (frequencies) in taVNS treatment.


Assuntos
Transtornos de Enxaqueca , Estimulação do Nervo Vago , Humanos , Imageamento por Ressonância Magnética/métodos , Transtornos de Enxaqueca/diagnóstico por imagem , Transtornos de Enxaqueca/terapia , Método Simples-Cego , Nervo Vago/fisiologia , Estimulação do Nervo Vago/métodos , Estudos Cross-Over
2.
Eur J Pain ; 28(4): 608-619, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009393

RESUMO

BACKGROUND: Low back pain (LBP) is a major public health issue that influences physical and emotional factors integral to the limbic system. This study aims to investigate the association between LBP and brain morphometry alterations as the duration of LBP increases (acute vs. chronic). METHODS: We used the UK Biobank data to investigate the morphological features of the limbic system in acute LBP (N = 115), chronic LBP (N = 243) and controls (N = 358), and tried to replicate our findings with an independent dataset composed of 45 acute LBP participants evaluated at different timepoints throughout 1 year from the OpenPain database. RESULTS: We found that in comparison with chronic LBP and pain-free controls, acute LBP was associated with increased volumes of the nucleus accumbens, amygdala, hippocampus, and thalamus, and increased grey matter volumes in the hippocampus and posterior cingulate gyrus. In the replication cohort, we found non-significantly larger hippocampus and thalamus volumes in the 3-month visit (acute LBP) compared to the 1-year visit (chronic LBP), with similar effect sizes as the UK Biobank dataset. CONCLUSIONS: Our results suggest that acute LBP is associated with dramatic morphometric increases in the limbic system and mesolimbic pathway, which may reflect an active brain response and self-regulation in the early stage of LBP. SIGNIFICANCE: Our study suggests that LBP in the acute phase is associated with the brain morphometric changes (increase) in some limbic areas, indicating that the acute phase of LBP may represent a crucial stage of self-regulation and active response to the disease's onset.


Assuntos
Dor Aguda , Dor Crônica , Dor Lombar , Humanos , Dor Lombar/diagnóstico por imagem , Dor Lombar/psicologia , Biobanco do Reino Unido , Bancos de Espécimes Biológicos , Sistema Límbico/diagnóstico por imagem , Encéfalo
3.
Front Aging Neurosci ; 13: 702796, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512305

RESUMO

Maintaining optimal cognitive functioning throughout the lifespan is a public health priority. Evaluation of cognitive outcomes following interventions to promote and preserve brain structure and function in older adults, and associated neural mechanisms, are therefore of critical importance. In this randomized controlled trial, we examined the behavioral and neural outcomes following mindfulness training (n = 72), compared to a cognitive fitness program (n = 74) in healthy, cognitively normal, older adults (65-80 years old). To assess cognitive functioning, we used the Preclinical Alzheimer Cognitive Composite (PACC), which combines measures of episodic memory, executive function, and global cognition. We hypothesized that mindfulness training would enhance cognition, increase intrinsic functional connectivity measured with magnetic resonance imaging (MRI) between the hippocampus and posteromedial cortex, as well as promote increased gray matter volume within those regions. Following the 8-week intervention, the mindfulness training group showed improved performance on the PACC, while the control group did not. Furthermore, following mindfulness training, greater improvement on the PACC was associated with a larger increase in intrinsic connectivity within the default mode network, particularly between the right hippocampus and posteromedial cortex and between the left hippocampus and lateral parietal cortex. The cognitive fitness training group did not show such effects. These findings demonstrate that mindfulness training improves cognitive performance in cognitively intact older individuals and strengthens connectivity within the default mode network, which is particularly vulnerable to aging affects. Clinical Trial Registration: [https://clinicaltrials.gov/ct2/show/NCT02628548], identifier [NCT02628548].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA