Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 20(17): 175706, 2009 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-19420601

RESUMO

The recombination dynamics of defect states in zinc oxide nanowires has been studied by developing a general expression for time-resolved photoluminescence intensity based on a second-order approximation for the radiative and non-radiative recombination rates. The model allows us to determine the parameters that characterize the recombination from deep defect states (defect concentration, unimolecular lifetime and bimolecular coefficient) through multi-fitting analysis of time-resolved photoluminescence measurements. Analyses conducted on zinc oxide nanowires gave deep state concentrations of the order of 10(18) cm(-3) and unimolecular lifetimes and bimolecular recombination coefficient comparable to those typical of interband recombination in direct gap semiconductors. The consistency of a 'two-channel decay' model (double exponential decay) has been tested by means of a similar analysis procedure. The results suggest that double exponential fitting of time-resolved photoluminescence data of zinc oxide nanowires may be just a mere phenomenological tool which does not reflect the real recombination dynamics of the visible emission band.

2.
J Biomed Mater Res B Appl Biomater ; 105(3): 689-699, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-26671827

RESUMO

Surgical implants are commonly used in abdominal wall surgery for hernia repair. Many different prostheses are currently offered to surgeons, comprising permanent synthetic polymer meshes and biologic scaffolds. There is a wide range of synthetic meshes currently available on the market with differing chemical compositions, fiber conformations, and mesh textures. These chemical and structural characteristics determine a specific biochemical and mechanical behavior and play a crucial role in guaranteeing a successful post-operative outcome. Although an increasing number of studies report on the structural and mechanical properties of synthetic surgical meshes, nowadays there are no consistent guidelines for the evaluation of mechanical biocompatibility or common criteria for the selection of prostheses. The aim of this work is to review synthetic meshes by considering the extensive bibliography documentation of their use in abdominal wall surgery, taking into account their material and structural properties, in Part I, and their mechanical behavior, in Part II. The main materials available for the manufacture of polymeric meshes are described, including references to their chemical composition, fiber conformation, and textile structural properties. These characteristics are decisive for the evaluation of mesh-tissue interaction process, including foreign body response, mesh encapsulation, infection, and adhesion formation. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 689-699, 2017.


Assuntos
Polímeros , Telas Cirúrgicas , Aderências Teciduais/prevenção & controle , Animais , Humanos , Aderências Teciduais/patologia
3.
J Biomed Mater Res B Appl Biomater ; 105(4): 892-903, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-26687728

RESUMO

This work reports the second part of a review on synthetic surgical meshes used for abdominal hernia repair. While material and structural characteristics, together with mesh-tissue interaction, were considered in a previous article (Part I), biomechanical behavior is described here in more detail. The role of the prosthesis is to strengthen the impaired abdominal wall, mimicking autologous tissue without reducing its compliance. Consequently, mesh mechanical properties play a crucial role in a successful surgical repair. The main available techniques for mechanical testing, such as uniaxial and biaxial tensile testing, ball burst, suture retention strength, and tear resistance testing, are described in depth. Among these methods, the biaxial tensile test is the one that can more faithfully reproduce the physiological loading condition. An outline of the most significant results documented in the literature is reported, showing the variety of data on mesh mechanical properties. Synthetic surgical meshes generally follow a non-linear stress-strain behavior, with mechanical characteristics dependant on test direction due to mesh anisotropy. Ex-vivo tests revealed an increased stiffness in mesh explants due to the gradual ingrowth of the host tissue after implant. In general, the absence of standardization in test methods and terminology makes it difficult to compare results from different studies. Numerical models of the abdominal wall interacting with surgical meshes were also discussed representing a potential tool for the selection of suitable prostheses. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 892-903, 2017.


Assuntos
Parede Abdominal/cirurgia , Estresse Mecânico , Telas Cirúrgicas , Resistência à Tração , Parede Abdominal/fisiopatologia , Animais , Humanos , Suporte de Carga
4.
J Biomech ; 49(9): 1818-1823, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27133659

RESUMO

The present work aims to assess, via numerical modeling, the global passive mechanical behavior of the healthy abdominal wall under the action of pressures that characterize different daily tasks and physiological functions. The evaluation of a normal range of intra-abdominal pressure (IAP) during activities of daily living is fundamental because pressure alterations can cause several adverse effects. At this purpose, a finite element model is developed from literature histomorphometric data and from diagnostic images of Computed Tomography (CT), detailing the different anatomical regions. Numerical simulations cover an IAP up to the physiological limit of 171 (0.0223MPa) mmHg reached while jumping. Numerical results are in agreement with evidences on physiological abdomens when evaluating the local deformations along the craniocaudal direction, the transversal load forces in different regions and the increase of the abdominal area at a IAP of 12mmHg. The developed model can be upgraded for the investigation of the abdominal hernia repair and the assessment of prostheses mechanical compatibility, correlating stiffness and tensile strength of the abdominal tissues with those of surgical meshes.


Assuntos
Parede Abdominal/anatomia & histologia , Modelos Biológicos , Parede Abdominal/diagnóstico por imagem , Parede Abdominal/fisiologia , Atividades Cotidianas , Análise de Elementos Finitos , Humanos , Pressão , Tomografia Computadorizada por Raios X
5.
J Mech Behav Biomed Mater ; 55: 271-285, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26615384

RESUMO

Synthetic meshes are widely used for surgical repair of different kind of prolapses. In the light of the experience of abdominal wall repair, similar prostheses are currently used in the pelvic region, to restore physiological anatomy after organ prolapse into the vaginal wall, that represent a recurrent dysfunction. For this purpose, synthetic meshes are surgically positioned in contact with the anterior and/or posterior vaginal wall, to inferiorly support prolapsed organs. Nonetheless, while mesh implantation restores physiological anatomy, it is often associated with different complications in the vaginal region. These potentially dangerous effects induce the surgical community to reconsider the safety and efficacy of mesh transvaginal placement. For this purpose, the evaluation of state-of-the-art research may provide the basis for a comprehensive analysis of mesh compatibility and functionality. The aim of this work is to review synthetic surgical meshes for pelvic organs prolapse repair, taking into account the mechanics of mesh material and structure, and to relate them with pelvic and vaginal tissue biomechanics. Synthetic meshes are currently available in different chemical composition, fiber and textile conformations. Material and structural properties are key factors in determining mesh biochemical and mechanical compatibility in vivo. The most significant results on vaginal tissue and surgical meshes mechanical characterization are here reported and discussed. Moreover, computational models of the pelvic region, which could support the surgeon in the evaluation of mesh performances in physiological conditions, are recalled.


Assuntos
Fenômenos Mecânicos , Prolapso de Órgão Pélvico/cirurgia , Telas Cirúrgicas , Animais , Fenômenos Biomecânicos , Simulação por Computador , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA