RESUMO
BACKGROUND: Little is known about the effects of dietary components on the regulation of the gastric emptying rate of alcohol and its impact on alcohol metabolism. We recently found that the crude water-insoluble dietary fibers from several types of botanical foods maintained aqueous ethanol solutions. Additionally, the ethanol-absorbing ability of the dietary fibers correlated with the inhibition of the blood ethanol elevation by delaying gastric emptying. Moreover, we found that the synergism between tomatoes and alanine to reduce the absorption of alcohol in rats was attributable to the effect of alanine on precipitates, such as the crude water-insoluble dietary fibers of tomatoes. In the present study, we assess whether an alanine-fortified tomato (AFT) is effective in relieving acute alcohol-induced adverse effects by lowering the alcohol action in healthy human volunteers following the ingestion of alcohol with a meal. METHODS: Twenty healthy males ingested the AFT or sugar as the control, with 1.2 g/kg of alcohol and a micronutrient-fortified meal in a randomized cross-over study. Breath alcohol concentrations were temporally measured, and blood and urine samples were obtained during the trial. The study protocol was repeated with the AFT and sugar groups reversed 4 weeks later. RESULTS: Various analyses were performed using the data from the 15 subjects. The breath alcohol concentrations significantly decreased when AFT was ingested. A decrease in the urinary pH was also noted following the ingestion of AFT. Moreover, the sum of seven sedative scores as subjective sensation after alcohol ingestion was significantly reduced by AFT the next morning. CONCLUSIONS: Our study demonstrates that the simultaneous ingestion of AFT under the consumption of excess alcohol and a micronutrient-fortified meal relieved the acute alcohol-induced adverse effects in male volunteers. These results are consistent with the effectiveness observed in rats as previously reported.
RESUMO
Delay in gastric emptying (GE) lowers the blood ethanol concentration (BEC) after alcohol administration. We previously demonstrated that water-insoluble fractions, mainly comprising dietary fiber derived from many types of botanical foods, possessed the ability to absorb ethanol-containing aqueous solutions. Furthermore, there was a significant correlation between the absorption of ethanol and lowering of BEC because of delay in GE. Here we identified dietary nutrients that synergize with the water-insoluble fraction of tomatoes to lower BEC in rats. Consequently, unlike tomato juice without alanine, tomato juice with 5.0% alanine decreased BEC depending on the delay in GE and mediated the ethanol-induced decrease in the spontaneous motor activity (an indicator of drunkenness). Our findings indicate that the synergism between tomato juice and alanine to reduce the absorption of ethanol was attributable to the effect of alanine on precipitates such as the water-insoluble fraction of tomatoes.