Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 173(7): 1783-1795.e14, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29731169

RESUMO

Anti-HIV-1 envelope broadly neutralizing monoclonal antibodies (bNAbs) isolated from memory B cells may not fully represent HIV-1-neutralizing profiles measured in plasma. Accordingly, we characterized near-pan-neutralizing antibodies extracted directly from the plasma of two "elite neutralizers." Circulating anti-gp120 polyclonal antibodies were deconvoluted using proteomics to guide lineage analysis of bone marrow plasma cells. In both subjects, a single lineage of anti-CD4-binding site (CD4bs) antibodies explained the plasma-neutralizing activity. Importantly, members of these lineages potently neutralized 89%-100% of a multi-tier 117 pseudovirus panel, closely matching the specificity and breadth of the circulating antibodies. X-ray crystallographic analysis of one monoclonal, N49P7, suggested a unique ability to bypass the CD4bs Phe43 cavity, while reaching deep into highly conserved residues of Layer 3 of the gp120 inner domain, likely explaining its extreme potency and breadth. Further direct analyses of plasma anti-HIV-1 bNAbs should provide new insights for developing antibody-based antiviral agents and vaccines.


Assuntos
Anticorpos Neutralizantes/imunologia , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/metabolismo , Sequência de Aminoácidos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/química , Sítios de Ligação , Antígenos CD4/química , Antígenos CD4/metabolismo , Cristalografia por Raios X , Anticorpos Anti-HIV/sangue , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/genética , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Terciária de Proteína , RNA Viral/sangue , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia
2.
J Infect Dis ; 229(3): 763-774, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38035854

RESUMO

BACKGROUND: Chronic inflammation persists in some people living with human immunodeficiency virus (HIV) during antiretroviral therapy and is associated with premature aging. The glycoprotein 120 (gp120) subunit of HIV-1 envelope sheds and can be detected in plasma, showing immunomodulatory properties even in the absence of detectable viremia. We evaluated whether plasma soluble gp120 (sgp120) and a family of gp120-specific anti-cluster A antibodies, linked to CD4 depletion in vitro, contribute to chronic inflammation, immune dysfunction, and subclinical cardiovascular disease in participants of the Canadian HIV and Aging Cohort Study with undetectable viremia. METHODS: Cross-sectional assessment of sgp120 and anti-cluster A antibodies was performed in 386 individuals from the cohort. Their association with proinflammatory cytokines and subclinical coronary artery disease was assessed using linear regression models. RESULTS: High levels of sgp120 and anti-cluster A antibodies were inversely correlated with CD4+ T cell count and CD4/CD8 ratio. The presence of sgp120 was associated with increased levels of interleukin 6. In participants with detectable atherosclerotic plaque and detectable sgp120, anti-cluster A antibodies and their combination with sgp120 levels correlated positively with the total volume of atherosclerotic plaques. CONCLUSIONS: This study showed that sgp120 may act as a pan toxin causing immune dysfunction and sustained inflammation in a subset of people living with HIV, contributing to the development of premature comorbid conditions.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Viremia , Estudos de Coortes , Estudos Transversais , Canadá , Infecções por HIV/tratamento farmacológico , Anticorpos Anti-HIV , Glicoproteínas , Proteína gp120 do Envelope de HIV
3.
J Virol ; 97(1): e0163822, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36511698

RESUMO

Small CD4-mimetic compound (CD4mc), which inhibits the interaction between gp120 with CD4, acts as an entry inhibitor and induces structural changes in the HIV-1 envelope glycoprotein trimer (Env) through its insertion within the Phe43 cavity of gp120. We recently developed YIR-821, a novel CD4mc, that has potent antiviral activity and lower toxicity than the prototype NBD-556. To assess the possibility of clinical application of YIR-821, we tested its antiviral activity using a panel of HIV-1 pseudoviruses from different subtypes. YIR-821 displayed entry inhibitor activity against 53.5% (21/40) of the pseudoviruses tested and enhanced neutralization mediated by coreceptor binding site (CoRBS) antibodies in 50% (16/32) of these. Furthermore, when we assessed the antiviral effects using a panel of pseudoviruses and autologous plasma IgG, enhancement of antibody-mediated neutralization activity was observed for 48% (15/31) of subtype B strains and 51% (28/55) of non-B strains. The direct antiviral activity of YIR-821 as an entry inhibitor was observed in 53% of both subtype B (27/51) and non-B subtype (40/75) pseudoviruses. Enhancement of antibody-dependent cellular cytotoxicity was also observed with YIR-821 for all six selected clinical isolates, as well as for the transmitted/founder (T/F) CH58 virus-infected cells. The sequence diversity in the CD4 binding site as well as other regions, such as the gp120 inner domain layers or gp41, may be involved in the multiple mechanisms related to the sensitive/resistant phenotype of the virus to YIR-821. Our findings may facilitate the clinical application of YIR-821. IMPORTANCE Small CD4-mimetic compound (CD4mc) interacts with the Phe43 cavity and triggers conformational changes, enhancing antibody-mediated neutralization and antibody-dependent cellular cytotoxicity (ADCC). Here, we evaluated the effect of YIR-821, a novel CD4mc, against clinical isolates, including both subtype B and non-B subtype viruses. Our results confirm the desirable properties of YIR-821, which include entry inhibition, enhancement of IgG-neutralization, binding, and ADCC, in addition to low toxicity and long half-life in a rhesus macaque model, that might facilitate the clinical application of this novel CD4mc. Our observation of primary viruses that are resistant to YIR-821 suggests that further development of CD4mcs with different structural properties is required.


Assuntos
Inibidores da Fusão de HIV , Infecções por HIV , HIV-1 , Animais , Antígenos CD4/metabolismo , Anticorpos Anti-HIV/sangue , Proteína gp120 do Envelope de HIV , Inibidores da Fusão de HIV/farmacologia , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Imunoglobulina G/sangue , Macaca mulatta
4.
Infect Immun ; 91(1): e0036122, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36472443

RESUMO

Mouse α-defensins, better known as cryptdins, are host protective antimicrobial peptides produced in the intestinal crypt by Paneth cells. To date, more than 20 cryptdin mRNAs have been identified from mouse small intestine, of which the first six cryptdins (Crp1 to Crp6) have been isolated and characterized at the peptide level. We quantified bactericidal activities against Escherichia coli and Staphylococcus aureus of the 17 cryptdin isoforms identified by Ouellette and colleagues from a single jejunal crypt (A. J. Ouellette et al., Infect Immun 62:5040-5047, 1994), along with linearized analogs of Crp1, Crp4, and Crp14. In addition, we analyzed the most potent and weakest cryptdins in the panel with respect to their ability to self-associate in solution. Finally, we solved, for the first time, the high-resolution crystal structure of a cryptdin, Crp14, and performed molecular dynamics simulation on Crp14 and a hypothetical mutant, T14K-Crp14. Our results indicate that mutational effects are highly dependent on cryptdin sequence, residue position, and bacterial strain. Crp14 adopts a disulfide-stabilized, three-stranded ß-sheet core structure and forms a noncanonical dimer stabilized by asymmetrical interactions between the two ß1 strands in parallel. The killing of E. coli by cryptdins is generally independent of their tertiary and quaternary structures that are important for the killing of S. aureus, which is indicative of two distinct mechanisms of action. Importantly, sequence variations impact the bactericidal activity of cryptdins by influencing their ability to self-associate in solution. This study expands our current understanding of how cryptdins function at the molecular level.


Assuntos
alfa-Defensinas , Camundongos , Animais , Sequência de Aminoácidos , Escherichia coli/genética , Staphylococcus aureus , Intestino Delgado , Isoformas de Proteínas
5.
J Virol ; 95(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33298541

RESUMO

The HIV-1 envelope glycoprotein (Env) trimer [(gp120/gp41)3] is a metastable complex expressed at the surface of viral particles and infected cells that samples different conformations. Before engaging CD4, Env adopts an antibody-resistant "closed" conformation (State 1). CD4 binding triggers an intermediate conformation (State 2) and then a more "open" conformation (State 3) that can be recognized by non-neutralizing antibodies (nnAbs) such as those that recognize the coreceptor binding site (CoRBS). Binding of antibodies to the CoRBS permits another family of nnAbs, the anti-cluster A family of Abs which target the gp120 inner domain, to bind and stabilize an asymmetric conformation (State 2A). Cells expressing Env in this conformation are susceptible to antibody-dependent cellular cytotoxicity (ADCC). This conformation can be stabilized by small-molecule CD4 mimetics (CD4mc) or soluble CD4 (sCD4) in combination with anti-CoRBS Ab and anti-cluster A antibodies. The precise stoichiometry of each component that permits this sequential opening of Env remains unknown. Here, we used a cell-based ELISA (CBE) assay to evaluate each component individually. In this assay we used a "trimer mixing" approach by combining wild-type (wt) subunits with subunits impaired for CD4 or CoRBS Ab binding. This enabled us to show that State 2A requires all three gp120 subunits to be bound by sCD4/CD4mc and anti-CoRBS Abs. Two of these subunits can then bind anti-cluster A Abs. Altogether, our data suggests how this antibody vulnerable Env conformation is stabilized.Importance Stabilization of HIV-1 Env State 2A has been shown to sensitize infected cells to ADCC. State 2A can be stabilized by a "cocktail" composed of CD4mc, anti-CoRBS and anti-cluster A Abs. We present evidence that optimal State 2A stabilization requires all three gp120 subunits to be bound by both CD4mc and anti-CoRBS Abs. Our study provides valuable information on how to stabilize this ADCC-vulnerable conformation. Strategies aimed at stabilizing State 2A might have therapeutic utility.

6.
J Virol ; 95(18): e0079621, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34232070

RESUMO

The activity of broadly neutralizing antibodies (bNAbs) targeting HIV-1 depends on pleiotropic functions, including viral neutralization and the elimination of HIV-1-infected cells. Several in vivo studies have suggested that passive administration of bNAbs represents a valuable strategy for the prevention or treatment of HIV-1. In addition, different strategies are currently being tested to scale up the production of bNAbs to obtain the large quantities of antibodies required for clinical trials. Production of antibodies in plants permits low-cost and large-scale production of valuable therapeutics; furthermore, pertinent to this work, it also includes an advanced glycoengineering platform. In this study, we used Nicotiana benthamiana to produce different Fc-glycovariants of a potent bNAb, PGT121, with near-homogeneous profiles and evaluated their antiviral activities. Structural analyses identified a close similarity in overall structure and glycosylation patterns of Fc regions for these plant-derived Abs and mammalian cell-derived Abs. When tested for Fc-effector activities, afucosylated PGT121 showed significantly enhanced FcγRIIIa interaction and antibody dependent cellular cytotoxicity (ADCC) against primary HIV-1-infected cells, both in vitro and ex vivo. However, the overall galactosylation profiles of plant PGT121 did not affect ADCC activities against infected primary CD4+ T cells. Our results suggest that the abrogation of the Fc N-linked glycan fucosylation of PGT121 is a worthwhile strategy to boost its Fc-effector functionality. IMPORTANCE PGT121 is a highly potent bNAb and its antiviral activities for HIV-1 prevention and therapy are currently being evaluated in clinical trials. The importance of its Fc-effector functions in clearing HIV-1-infected cells is also under investigation. Our results highlight enhanced Fc-effector activities of afucosylated PGT121 MAbs that could be important in a therapeutic context to accelerate infected cell clearance and slow disease progression. Future studies to evaluate the potential of plant-produced afucosylated PGT121 in controlling HIV-1 replication in vivo are warranted.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/administração & dosagem , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Anticorpos Anti-HIV/administração & dosagem , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Polissacarídeos/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Glicosilação , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , Nicotiana/imunologia , Nicotiana/virologia
7.
J Virol ; 94(4)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31776278

RESUMO

Induction of protective antibodies is a critical goal of HIV-1 vaccine development. One strategy is to induce nonneutralizing antibodies (NNAbs) that kill virus-infected cells, as these antibody specificities have been implicated in slowing HIV-1 disease progression and in protection. HIV-1 Env constant region 1 and 2 (C1C2) monoclonal antibodies (MAbs) frequently mediate potent antibody-dependent cellular cytotoxicity (ADCC), making them an important vaccine target. Here, we explore the effect of delayed and repetitive boosting of RV144 vaccine recipients with AIDSVAX B/E on the C1C2-specific MAb repertoire. It was found that boosting increased clonal lineage-specific ADCC breadth and potency. A ligand crystal structure of a vaccine-induced broad and potent ADCC-mediating C1C2-specific MAb showed that it bound a highly conserved Env gp120 epitope. Thus, boosting to affinity mature these types of IgG C1C2-specific antibody responses may be one method by which to make an improved HIV vaccine with higher efficacy than that seen in the RV144 trial.IMPORTANCE Over one million people become infected with HIV-1 each year, making the development of an efficacious HIV-1 vaccine an important unmet medical need. The RV144 human HIV-1 vaccine regimen is the only HIV-1 clinical trial to date to demonstrate vaccine efficacy. An area of focus has been on identifying ways by which to improve upon RV144 vaccine efficacy. The RV305 HIV-1 vaccine regimen was a follow-up boost of RV144 vaccine recipients that occurred 6 to 8 years after the conclusion of RV144. Our study focused on the effect of delayed boosting in humans on the vaccine-induced Env constant region 1 and 2 (C1C2)-specific antibody repertoire. It was found that boosting with an HIV-1 Env vaccine increased C1C2-specific antibody-dependent cellular cytotoxicity potency and breadth.


Assuntos
Vacinas contra a AIDS/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Anticorpos Monoclonais/imunologia , Formação de Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , Anticorpos Anti-HIV/ultraestrutura , Proteína gp120 do Envelope de HIV/ultraestrutura , Infecções por HIV/imunologia , HIV-1/imunologia , Humanos , Imunização Secundária/métodos , Imunoglobulina G/imunologia
8.
BMC Biol ; 18(1): 91, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32693837

RESUMO

BACKGROUND: The binding of HIV-1 Envelope glycoproteins (Env) to host receptor CD4 exposes vulnerable conserved epitopes within the co-receptor binding site (CoRBS) which are required for the engagement of either CCR5 or CXCR4 co-receptor to allow HIV-1 entry. Antibodies against this region have been implicated in the protection against HIV acquisition in non-human primate (NHP) challenge studies and found to act synergistically with antibodies of other specificities to deliver effective Fc-mediated effector function against HIV-1-infected cells. Here, we describe the structure and function of N12-i2, an antibody isolated from an HIV-1-infected individual, and show how the unique structural features of this antibody allow for its effective Env recognition and Fc-mediated effector function. RESULTS: N12-i2 binds within the CoRBS utilizing two adjacent sulfo-tyrosines (TYS) for binding, one of which binds to a previously unknown TYS binding pocket formed by gp120 residues of high sequence conservation among HIV-1 strains. Structural alignment with gp120 in complex with the co-receptor CCR5 indicates that the new pocket corresponds to TYS at position 15 of CCR5. In addition, structure-function analysis of N12-i2 and other CoRBS-specific antibodies indicates a link between modes of antibody binding within the CoRBS and Fc-mediated effector activities. The efficiency of antibody-dependent cellular cytotoxicity (ADCC) correlated with both the level of antibody binding and the mode of antibody attachment to the epitope region, specifically with the way the Fc region was oriented relative to the target cell surface. Antibodies with poor Fc access mediated the poorest ADCC whereas those with their Fc region readily accessible for interaction with effector cells mediated the most potent ADCC. CONCLUSION: Our data identify a previously unknown binding site for TYS within the assembled CoRBS of the HIV-1 virus. In addition, our combined structural-modeling-functional analyses provide new insights into mechanisms of Fc-effector function of antibodies against HIV-1, in particular, how antibody binding to Env antigen affects the efficiency of ADCC response.


Assuntos
HIV-1/fisiologia , Receptores de HIV/genética , Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/metabolismo , Humanos , Receptores de HIV/metabolismo
9.
J Virol ; 93(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31484748

RESUMO

CD4 downregulation on infected cells is a highly conserved function of primate lentiviruses. It has been shown to positively impact viral replication by a variety of mechanisms, including enhanced viral release and infectivity, decrease of cell reinfection, and protection from antibody-dependent cellular cytotoxicity (ADCC), which is often mediated by antibodies that require CD4 to change envelope (Env) conformation. Here, we report that incorporation of CD4 into HIV-1 viral particles affects Env conformation resulting in the exposure of occluded epitopes recognized by CD4-induced antibodies. This translates into enhanced neutralization susceptibility by these otherwise nonneutralizing antibodies but is prevented by the HIV-1 Nef accessory protein. Altogether, these findings suggest that another functional consequence of Nef-mediated CD4 downregulation is the protection of viral particles from neutralization by commonly elicited CD4-induced antibodies.IMPORTANCE It has been well established that Env-CD4 complexes expose epitopes recognized by commonly elicited CD4-induced antibodies at the surface of HIV-1-infected cells, rendering them vulnerable to ADCC responses. Here, we show that CD4 incorporation has a profound impact on Env conformation at the surface of viral particles. Incorporated CD4 exposes CD4-induced epitopes on Env, rendering HIV-1 susceptible to neutralization by otherwise nonneutralizing antibodies.


Assuntos
Antígenos CD4/imunologia , HIV-1/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antígenos CD4/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Cães , Epitopos/imunologia , Células HEK293 , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/virologia , Soropositividade para HIV , HIV-1/metabolismo , Humanos , Ligação Proteica/imunologia , Vírion/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
10.
J Virol ; 93(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31434734

RESUMO

The negative strand of HIV-1 encodes a highly hydrophobic antisense protein (ASP) with no known homologs. The presence of humoral and cellular immune responses to ASP in HIV-1 patients indicates that ASP is expressed in vivo, but its role in HIV-1 replication remains unknown. We investigated ASP expression in multiple chronically infected myeloid and lymphoid cell lines using an anti-ASP monoclonal antibody (324.6) in combination with flow cytometry and microscopy approaches. At baseline and in the absence of stimuli, ASP shows polarized subnuclear distribution, preferentially in areas with low content of suppressive epigenetic marks. However, following treatment with phorbol 12-myristate 13-acetate (PMA), ASP translocates to the cytoplasm and is detectable on the cell surface, even in the absence of membrane permeabilization, indicating that 324.6 recognizes an ASP epitope that is exposed extracellularly. Further, surface staining with 324.6 and anti-gp120 antibodies showed that ASP and gp120 colocalize, suggesting that ASP might become incorporated in the membranes of budding virions. Indeed, fluorescence correlation spectroscopy studies showed binding of 324.6 to cell-free HIV-1 particles. Moreover, 324.6 was able to capture and retain HIV-1 virions with efficiency similar to that of the anti-gp120 antibody VRC01. Our studies indicate that ASP is an integral protein of the plasma membranes of chronically infected cells stimulated with PMA, and upon viral budding, ASP becomes a structural protein of the HIV-1 envelope. These results may provide leads to investigate the possible role of ASP in the virus replication cycle and suggest that ASP may represent a new therapeutic or vaccine target.IMPORTANCE The HIV-1 genome contains a gene expressed in the opposite, or antisense, direction to all other genes. The protein product of this antisense gene, called ASP, is poorly characterized, and its role in viral replication remains unknown. We provide evidence that the antisense protein, ASP, of HIV-1 is found within the cell nucleus in unstimulated cells. In addition, we show that after PMA treatment, ASP exits the nucleus and localizes on the cell membrane. Moreover, we demonstrate that ASP is present on the surfaces of viral particles. Altogether, our studies identify ASP as a new structural component of HIV-1 and show that ASP is an accessory protein that promotes viral replication. The presence of ASP on the surfaces of both infected cells and viral particles might be exploited therapeutically.


Assuntos
Membrana Celular/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Proteínas do Envelope Viral/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/patologia , Humanos , Leucócitos Mononucleares/metabolismo , Transporte Proteico , Vírion/metabolismo
11.
J Virol ; 93(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30894474

RESUMO

To minimize immune responses against infected cells, HIV-1 limits the surface expression of its envelope glycoprotein (Env). Here, we demonstrate that this mechanism is specific for the Env conformation and affects the efficiency of antibody-dependent cellular cytotoxicity (ADCC). Using flow cytometry and confocal microscopy, we show that broadly neutralizing antibodies (bNAbs) targeting the "closed" conformation of Env induce its internalization from the surface. In contrast, non-neutralizing antibodies (nNAbs) are displayed on the cell surface for prolonged period of times. The bNAb-induced Env internalization can be decreased by blocking dynamin function, which translates into higher susceptibilities of infected cells to ADCC. Our results suggest that antibody-mediated Env internalization is a mechanism used by HIV-1 to evade immune responses against the "closed" conformation of Env expressed on HIV-1-infected cells.IMPORTANCE HIV-1 has evolved to acquire several strategies to limit the exposure of its envelope glycoproteins (Env) on the surface of infected cells. In this study, we show that antibody-induced Env internalization is conformation specific and reduces the susceptibility of infected cells to antibody-dependent cellular cytotoxicity (ADCC). Thus, a better understanding of this mechanism might help develop antibodies with improved capacities to mediate ADCC.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/imunologia , HIV-1/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Anticorpos Neutralizantes/imunologia , Linfócitos T CD4-Positivos/imunologia , Regulação Viral da Expressão Gênica/genética , Células HEK293 , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Soropositividade para HIV , HIV-1/metabolismo , Humanos , Conformação Molecular , Internalização do Vírus , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
12.
J Virol ; 93(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31554684

RESUMO

The HIV-1 envelope glycoprotein (Env) trimer mediates virus entry into cells. The "closed" conformation of Env is resistant to nonneutralizing antibodies (nnAbs). These antibodies mostly recognize occluded epitopes that can be exposed upon binding of CD4 or small-molecule CD4 mimetics (CD4mc). Here, we describe a new family of small molecules that expose Env to nnAbs and sensitize infected cells to antibody-dependent cellular cytotoxicity (ADCC). These compounds have a limited capacity to inhibit virus infection directly but are able to sensitize viral particles to neutralization by otherwise nonneutralizing antibodies. Structural analysis shows that some analogs of this family of CD4mc engage the gp120 Phe43 cavity by contacting the highly conserved D368 residue, making them attractive scaffolds for drug development.IMPORTANCE HIV-1 has evolved multiple strategies to avoid humoral responses. One efficient mechanism is to keep its envelope glycoprotein (Env) in its "closed" conformation. Here, we report on a new family of small molecules that are able to "open up" Env, thus exposing vulnerable epitopes. This new family of molecules binds in the Phe43 cavity and contacts the highly conserved D368 residue. The structural and biological attributes of molecules of this family make them good candidates for drug development.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antígenos CD4/metabolismo , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , Anticorpos Neutralizantes , Ácido Aspártico , Antígenos CD4/química , Linfócitos T CD4-Positivos/virologia , Epitopos/imunologia , Células HEK293 , Proteína gp120 do Envelope de HIV/química , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Vírion
13.
J Virol ; 93(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30429344

RESUMO

HIV-1 conceals epitopes of its envelope glycoproteins (Env) recognized by antibody (Ab)-dependent cellular cytotoxicity (ADCC)-mediating antibodies. These Abs, including anti-coreceptor binding site (CoRBS) and anti-cluster A antibodies, preferentially recognize Env in its "open" conformation. The binding of anti-CoRBS Abs has been shown to induce conformational changes that further open Env, allowing interaction of anti-cluster A antibodies. We explored the possibility that CoRBS Abs synergize with anti-cluster A Abs to engage Fc-gamma receptors to mediate ADCC. We found that binding of anti-CoRBS and anti-cluster A Abs to the same gp120 is required for interaction with soluble dimeric FcγRIIIa in enzyme-linked immunosorbent assays (ELISAs). We also found that Fc regions of both Abs are required to optimally engage FcγRIIIa and mediate robust ADCC. Taken together, our results indicate that these two families of Abs act together in a sequential and synergistic fashion to promote FcγRIIIa engagement and ADCC.IMPORTANCE The "open" CD4-bound conformation of HIV-1 envelope glycoproteins is the primary target of antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies present in HIV-positive (HIV+) sera, such as anti-coreceptor binding site and anti-cluster A antibodies. Here we report that the binding of these two families of antibodies is required to engage FcγRIIIa and mediate ADCC.


Assuntos
Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Receptores de IgG/metabolismo , Linfócitos T/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Sítios de Ligação , Anticorpos Anti-HIV/metabolismo , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , Ligação Proteica , Receptores de IgG/imunologia , Proteínas Recombinantes/imunologia
14.
J Virol ; 90(19): 8395-409, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27384653

RESUMO

Previous studies have shown that highly conserved residues in the inner domain of gp120 are required for HIV-1 envelope glycoprotein (Env) transitions to the CD4-bound conformation (A. Finzi, S. H. Xiang, B. Pacheco, L. Wang, J. Haight, et al., Mol Cell 37:656-667, 2010, http://dx.doi.org/10.1016/j.molcel.2010.02.012; A. Desormeaux, M. Coutu, H. Medjahed, B. Pacheco, A. Herschhorn, et al., J Virol 87:2549-2562, 2013, http://dx.doi.org/10.1128/JVI.03104-12). Moreover, W69, a highly conserved residue located at the interface between layer 1 and layer 2 of the inner domain, was recently shown to be important for efficient Env recognition by CD4-induced (CD4i) antibodies capable of potent antibody-dependent cellular cytotoxicity (W. D. Tolbert, N. Gohain, M. Veillette, J. P. Chapleau, C. Orlandi, et al., 2016, Structure 24:697-709, http://dx.doi.org/10.1016/j.str.2016.03.005; S. Ding, M. Veillette, M. Coutu, J. Prevost, L. Scharf, et al., 2016, J Virol 90:2127-2134, http://dx.doi.org/10.1128/JVI.02779-15). We evaluated the contribution of the hydrophobicity of W69 to conformational changes of Env by replacing it with a series of residues with aliphatic or aromatic side chains of decreasing chain length. We have found that the hydrophobicity of residue 69 is important for Env processing, CD4 binding, and its transition to the CD4-bound conformation. The most deleterious effect was observed when W69 was replaced with alanine or glycine residues. However, the functions lost due to W69 mutations could be progressively restored with amino acids of increasing aliphatic chain length and fully recovered with residues bearing an aromatic ring. Interestingly, poor CD4 binding of W69A could be fully restored by introducing a compensatory mutation within layer 2 (S115W). Structural studies of HIV-1 gp120 coree W69A/S115W mutant bound to the CD4 peptide mimetic M48U1 and Fab of anti-cluster A antibody N60-i3 revealed no perturbations to the overall structure of the double mutant compared to the wild-type protein but identified higher mobility within the interface between layer 1 and layer 2, the bridging sheet region, and the CD4 binding site.IMPORTANCE HIV-1 Env transitions to the CD4-bound conformation are required for viral entry. Previous studies identified a highly conserved residue of the inner domain, W69, as being involved in these conformational transitions (A. Finzi, S. H. Xiang, B. Pacheco, L. Wang, J. Haight, et al., Mol Cell 37:656-667, 2010, http://dx.doi.org/10.1016/j.molcel.2010.02.012). Here, we show that W69, located at the interface between gp120 and gp41 in the PGT151-bound trimer, plays a critical role in the interprotomer signaling induced by CD4 binding. This new information might be useful in immunogen design.


Assuntos
Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Multimerização Proteica , Substituição de Aminoácidos , Sequência Conservada , Análise Mutacional de DNA , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Estabilidade Proteica
15.
J Virol ; 89(17): 8840-54, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26085162

RESUMO

UNLABELLED: Accumulating evidence indicates a role for Fc receptor (FcR)-mediated effector functions of antibodies, including antibody-dependent cell-mediated cytotoxicity (ADCC), in prevention of human immunodeficiency virus type 1 (HIV-1) acquisition and in postinfection control of viremia. Consequently, an understanding of the molecular basis for Env epitopes that constitute effective ADCC targets is of fundamental interest for humoral anti-HIV-1 immunity and for HIV-1 vaccine design. A substantial portion of FcR effector function of potentially protective anti-HIV-1 antibodies is directed toward nonneutralizing, transitional, CD4-inducible (CD4i) epitopes associated with the gp41-reactive region of gp120 (cluster A epitopes). Our previous studies defined the A32-like epitope within the cluster A region and mapped it to the highly conserved and mobile layers 1 and 2 of the gp120 inner domain within the C1-C2 regions of gp120. Here, we elucidate additional cluster A epitope structures, including an A32-like epitope, recognized by human monoclonal antibody (MAb) N60-i3, and a hybrid A32-C11-like epitope, recognized by rhesus macaque MAb JR4. These studies define for the first time a hybrid A32-C11-like epitope and map it to elements of both the A32-like subregion and the seven-layered ß-sheet of the gp41-interactive region of gp120. These studies provide additional evidence that effective antibody-dependent effector function in the cluster A region depends on precise epitope targeting--a combination of epitope footprint and mode of antibody attachment. All together these findings help further an understanding of how cluster A epitopes are targeted by humoral responses. IMPORTANCE: HIV/AIDS has claimed the lives of over 30 million people. Although antiretroviral drugs can control viral replication, no vaccine has yet been developed to prevent the spread of the disease. Studies of natural HIV-1 infection, simian immunodeficiency virus (SIV)- or simian-human immunodeficiency virus (SHIV)-infected nonhuman primates (NHPs), and HIV-1-infected humanized mouse models, passive transfer studies in infants born to HIV-infected mothers, and the RV144 clinical trial have linked FcR-mediated effector functions of anti-HIV-1 antibodies with postinfection control of viremia and/or blocking viral acquisition. With this report we provide additional definition of the molecular determinants for Env antigen engagement which lead to effective antibody-dependent effector function directed to the nonneutralizing CD4-dependent epitopes in the gp41-reactive region of gp120. These findings have important implications for the development of an effective HIV-1 vaccine.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/ultraestrutura , Proteína gp41 do Envelope de HIV/ultraestrutura , HIV-1/imunologia , Vacinas contra a AIDS/imunologia , Sequência de Aminoácidos , Animais , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Sítios de Ligação de Anticorpos/imunologia , Linfócitos T CD4-Positivos/imunologia , Cristalografia por Raios X , Epitopos/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp41 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , Humanos , Imunidade Humoral/imunologia , Macaca mulatta/imunologia , Dados de Sequência Molecular , Conformação Proteica , Receptores Fc/imunologia , Alinhamento de Sequência , Vírus da Imunodeficiência Símia/imunologia , Viremia/imunologia , Viremia/virologia
16.
J Virol ; 88(21): 12895-906, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25165110

RESUMO

UNLABELLED: The RV144 vaccine trial implicated epitopes in the C1 region of gp120 (A32-like epitopes) as targets of potentially protective antibody-dependent cellular cytotoxicity (ADCC) responses. A32-like epitopes are highly immunogenic, as infected or vaccinated individuals frequently produce antibodies specific for these determinants. Antibody titers, as measured by enzyme-linked immunosorbent assay (ELISA) against these epitopes, however, do not consistently correlate with protection. Here, we report crystal structures of CD4-stabilized gp120 cores complexed with the Fab fragments of two nonneutralizing, A32-like monoclonal antibodies (MAbs), N5-i5 and 2.2c, that compete for antigen binding and have similar antigen-binding affinities yet exhibit a 75-fold difference in ADCC potency. We find that these MAbs recognize overlapping epitopes formed by mobile layers 1 and 2 of the gp120 inner domain, including the C1 and C2 regions, but bind gp120 at different angles via juxtaposed VH and VL contact surfaces. A comparison of structural and immunological data further showed that antibody orientation on bound antigen and the capacity to form multivalent antigen-antibody complexes on target cells were key determinants of ADCC potency, with the latter process having the greater impact. These studies provide atomic-level definition of A32-like epitopes implicated as targets of protective antibodies in RV144. Moreover, these studies establish that epitope structure and mode of antibody binding can dramatically affect the potency of Fc-mediated effector function against HIV-1. These results provide key insights for understanding, refining, and improving the outcome of HIV vaccine trials, in which relevant immune responses are facilitated by A32-like elicited responses. IMPORTANCE: HIV-1 Env is a primary target for antibodies elicited during infection. Although a small number of infected individuals elicit broadly neutralizing antibodies, the bulk of the humoral response consists of antibodies that do not neutralize or do so with limited breadth but may effect protection through Fc receptor-dependent processes, such as antibody-dependent cellular cytotoxicity (ADCC). Understanding these nonneutralizing responses is an important aspect of elucidating the complete spectrum of immune response against HIV-1 infection. With this report, we provide the first atomic-level definition of nonneutralizing CD4-induced epitopes in the N-terminal region of the HIV-1 gp120 (A32-like epitopes). Further, our studies point to the dominant role of precise epitope targeting and mode of antibody attachment in ADCC responses even when largely overlapping epitopes are involved. Such information provides key insights into the mechanisms of Fc-mediated function of antibodies to HIV-1 and will help us understand the outcome of vaccine trials based on humoral immunity.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Cristalografia por Raios X , Epitopos/química , Epitopos/imunologia , Anticorpos Anti-HIV/química , Proteína gp120 do Envelope de HIV/química , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Modelos Moleculares , Ligação Proteica , Conformação Proteica
17.
medRxiv ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38883797

RESUMO

CD4-mimetics (CD4mcs) are small molecule compounds that mimic the interaction of the CD4 receptor with HIV-1 envelope glycoproteins (Env). Env from primary viruses normally samples a "closed" conformation which occludes epitopes recognized by CD4-induced (CD4i) non-neutralizing antibodies (nnAbs). CD4mcs induce conformational changes on Env resulting in the exposure of these otherwise inaccessible epitopes. Here we evaluated the capacity of plasma from a cohort of 50 people living with HIV to recognize HIV-1-infected cells and eliminate them by antibody-dependent cellular cytotoxicity (ADCC) in the presence of a potent indoline CD4mc. We observed a marked heterogeneity among plasma samples. By measuring the levels of different families of CD4i Abs, we found that the levels of anti-cluster A, anti-coreceptor binding site and anti-gp41 cluster I antibodies are responsible for plasma-mediated ADCC in presence of CD4mc.

18.
bioRxiv ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38895270

RESUMO

The majority of naturally-elicited antibodies against the HIV-1 envelope glycoproteins (Env) are non-neutralizing (nnAbs), because they are unable to recognize the Env timer in its native "closed" conformation. Nevertheless, it has been shown that nnAbs have the potential to eliminate HIV-1-infected cells by Antibody-Dependent Cellular Cytotoxicity (ADCC) provided that Env is present on the cell surface in its "open" conformation. This is because most nnAbs recognize epitopes that become accessible only after Env interaction with CD4 and the exposure of epitopes that are normally occluded in the closed trimer. HIV-1 limits this vulnerability by downregulating CD4 from the surface of infected cells, thus preventing a premature encounter of Env with CD4. Small CD4-mimetics (CD4mc) sensitize HIV-1-infected cells to ADCC by opening the Env glycoprotein and exposing CD4-induced (CD4i) epitopes. There are two families of CD4i nnAbs, termed anti-cluster A and anti-CoRBS Abs, which are known to mediate ADCC in the presence of CD4mc. Here, we performed Fab competition experiments and found that anti-gp41 cluster I antibodies comprise a major fraction of the plasma ADCC activity in people living with HIV (PLWH). Moreover, addition of gp41 cluster I antibodies to cluster A and CoRBS antibodies greatly enhanced ADCC mediated cell killing in the presence of a potent indoline CD4mc, CJF-III-288. This cocktail outperformed broadly-neutralizing antibodies and even showed activity against HIV-1 infected monocyte-derived macrophages. Thus, combining CD4i antibodies with different specificities achieves maximal ADCC activity, which may be of utility in HIV cure strategies.

19.
Viruses ; 15(5)2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37243271

RESUMO

The ability of the HIV-1 accessory proteins Nef and Vpu to decrease CD4 levels contributes to the protection of infected cells from antibody-dependent cellular cytotoxicity (ADCC) by preventing the exposure of Env vulnerable epitopes. Small-molecule CD4 mimetics (CD4mc) based on the indane and piperidine scaffolds such as (+)-BNM-III-170 and (S)-MCG-IV-210 sensitize HIV-1-infected cells to ADCC by exposing CD4-induced (CD4i) epitopes recognized by non-neutralizing antibodies that are abundantly present in plasma from people living with HIV. Here, we characterize a new family of CD4mc, (S)-MCG-IV-210 derivatives, based on the piperidine scaffold which engages the gp120 within the Phe43 cavity by targeting the highly conserved Asp368 Env residue. We utilized structure-based approaches and developed a series of piperidine analogs with improved activity to inhibit the infection of difficult-to-neutralize tier-2 viruses and sensitize infected cells to ADCC mediated by HIV+ plasma. Moreover, the new analogs formed an H-bond with the α-carboxylic acid group of Asp368, opening a new avenue to enlarge the breadth of this family of anti-Env small molecules. Overall, the new structural and biological attributes of these molecules make them good candidates for strategies aimed at the elimination of HIV-1-infected cells.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Epitopos , Linfócitos T CD4-Positivos , Antígenos CD4/metabolismo , Citotoxicidade Celular Dependente de Anticorpos , Proteína gp120 do Envelope de HIV/metabolismo , Anticorpos Anti-HIV
20.
Front Immunol ; 14: 1178355, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334379

RESUMO

SARS-CoV-2, the virus behind the COVID-19 pandemic, has changed over time to the extent that the current virus is substantially different from what originally led to the pandemic in 2019-2020. Viral variants have modified the severity and transmissibility of the disease and continue do so. How much of this change is due to viral fitness versus a response to immune pressure is hard to define. One class of antibodies that continues to afford some level of protection from emerging variants are those that closely overlap the binding site for angiotensin-converting enzyme 2 (ACE2) on the receptor binding domain (RBD). Some members of this class that were identified early in the course of the pandemic arose from the VH 3-53 germline gene (IGHV3-53*01) and had short heavy chain complementarity-determining region 3s (CDR H3s). Here, we describe the molecular basis of the SARS-CoV-2 RBD recognition by the anti-RBD monoclonal antibody CoV11 isolated early in the COVID-19 pandemic and show how its unique mode of binding the RBD determines its neutralization breadth. CoV11 utilizes a heavy chain VH 3-53 and a light chain VK 3-20 germline sequence to bind to the RBD. Two of CoV11's four heavy chain changes from the VH 3-53 germline sequence, ThrFWR H128 to Ile and SerCDR H131 to Arg, and some unique features in its CDR H3 increase its affinity to the RBD, while the four light chain changes from the VK 3-20 germline sequence sit outside of the RBD binding site. Antibodies of this type can retain significant affinity and neutralization potency against variants of concern (VOCs) that have diverged significantly from original virus lineage such as the prevalent omicron variant. We also discuss the mechanism by which VH 3-53 encoded antibodies recognize spike antigen and show how minimal changes to their sequence, their choice of light chain, and their mode of binding influence their affinity and impact their neutralization breadth.


Assuntos
Antígenos de Grupos Sanguíneos , COVID-19 , Humanos , Pandemias , SARS-CoV-2 , Família Multigênica , Anticorpos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA