Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126232

RESUMO

Plant viruses exist in a broader ecological community, with key components include non-vector herbivores that can impact vector abundance, behavior, and virus transmission within shared host plants. However, little is known about the effects of non-vector herbivores infestation on the virus transmission by vector insects on the neighboring plants through inter-plant airborne chemicals. In this study, we investigated how volatiles emitted from tomato plants infested with the two-spotted spider mite (Tetranychus urticae) affect the infection of Tomato yellow leaf curl virus (TYLCV) transmitted by the whitefly (Bemisia tabaci) in the neighboring plants. Exposure of neighboring tomato plants to volatiles released from T. urticae-infested tomato plants reduced subsequent herbivory as well as TYLCV transmission and infection, and JA signaling pathway was essential for generation of the inter-plant defense signals. We also demonstrated that (E)-ß-Ocimene and MeSA were two volatiles induced by T. urticae that synergistically attenuated TYLCV transmission and infection in tomato. Thus, our findings suggest that plant-plant communication via volatiles likely represents a widespread defensive mechanism that substantially contributes to plant fitness. Understanding such phenomena may help us to predict the occurrence and epidemic of multiple herbivores and viruses in the agroecosystem, ultimately to manage pest and virus outbreaks.

2.
J Nanobiotechnology ; 22(1): 169, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609998

RESUMO

INTRODUCTION: Angiotensin-converting enzyme 2 (ACE2) and AXL tyrosine kinase receptor are known to be involved in the SARS-CoV-2 entry of the host cell. Therefore, targeting ACE2 and AXL should be an effective strategy to inhibit virus entry into cells. However, developing agents that can simultaneously target ACE2 and AXL remains a formidable task. The natural compound quercetin has been shown to inhibit AXL expression. MATERIALS AND METHODS: In this study, we employed PLGA nanoparticles to prepare nanoparticles encapsulated with quercetin, coated with ACE2-containing cell membranes, or encapsulated with quercetin and then coated with ACE-2-containing cell membranes. These nanoparticles were tested for their abilities to neutralize or inhibit viral infection. RESULTS: Our data showed that nanoparticles encapsulated with quercetin and then coated with ACE2-containing cell membrane inhibited the expression of AXL without causing cytotoxic activity. Nanoparticles incorporated with both quercetin and ACE2-containing cell membrane were found to be able to neutralize pseudo virus infection and were more effective than free quercetin and nanoparticles encapsulated with quercetin at inhibition of pseudo virus and SARS-CoV-2 infection. CONCLUSIONS: We have shown that the biomimetic nanoparticles incorporated with both ACE-2 membrane and quercetin showed the most antiviral activity and may be further explored for clinical application.


Assuntos
COVID-19 , Nanopartículas , Humanos , Enzima de Conversão de Angiotensina 2 , Quercetina/farmacologia , Quercetina/uso terapêutico , SARS-CoV-2
3.
Plant J ; 112(3): 694-708, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36086899

RESUMO

Rapid callose accumulation has been shown to mediate defense in certain plant-virus interactions. Exposure to the green leaf volatile (Z)-3-hexenol (Z-3-HOL) can prime tomato (Solanum lycopersicum) for an enhanced defense against subsequent infection by whitefly-transmitted Tomato yellow leaf curl virus (TYLCV). However, the molecular mechanisms affecting Z-3-HOL-induced resistance are poorly understood. Here, we explored the mechanisms underlying Z-3-HOL-induced resistance against whitefly-transmitted TYLCV infection and the role of callose accumulation during this process. Tomato plants pre-treated with Z-3-HOL displayed callose priming upon whitefly infestation. The callose inhibitor 2-deoxy-d-glucose abolished Z-3-HOL-induced resistance, confirming the importance of callose in this induced resistance. We also found that Z-3-HOL pre-treatment enhanced salicylic acid levels and activated sugar signaling in tomato upon whitefly infestation, which increased the expression of the cell wall invertase gene Lin6 to trigger augmented callose deposition against TYLCV infection resulting from whitefly transmission. Using virus-induced gene silencing, we demonstrated the Lin6 expression is relevant for sugar accumulation mediated callose priming in restricting whitefly-transmitted TYLCV infection in plants that have been pre-treated with Z-3-HOL. Moreover, Lin6 induced the expression of the callose synthase gene Cals12, which is also required for Z-3-HOL-induced resistance of tomato against whitefly-transmitted TYLCV infection. These findings highlight the importance of sugar signaling in the priming of callose as a defense mechanism in Z-3-HOL-induced resistance of tomato against whitefly-transmitted TYLCV infection. The results will also increase our understanding of defense priming can be useful for the biological control of viral diseases.


Assuntos
Begomovirus , Hemípteros , Solanum lycopersicum , Animais , Begomovirus/genética , Solanum lycopersicum/genética , Hemípteros/genética , Doenças das Plantas/genética , Açúcares
4.
Am J Pathol ; 192(12): 1763-1778, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36150505

RESUMO

Blastoid/pleomorphic morphology is associated with short survival in mantle cell lymphoma (MCL), but its prognostic value is overridden by Ki-67 in multivariate analysis. Herein, a nuclear segmentation model was developed using deep learning, and nuclei of tumor cells in 103 MCL cases were automatically delineated. Eight nuclear morphometric attributes were extracted from each nucleus. The mean, variance, skewness, and kurtosis of each attribute were calculated for each case, resulting in 32 morphometric parameters. Compared with those in classic MCL, 17 morphometric parameters were significantly different in blastoid/pleomorphic MCL. Using univariate analysis, 16 morphometric parameters (including 14 significantly different between classic and blastoid/pleomorphic MCL) emerged as significant prognostic factors. Using multivariate analysis, Biologic MCL International Prognostic Index (bMIPI) risk group (P = 0.025), low skewness of nuclear irregularity (P = 0.020), and high mean of nuclear irregularity (P = 0.047) emerged as independent adverse prognostic factors. Additionally, a morphometric score calculated from the skewness and mean of nuclear irregularity (P = 0.0038) was an independent prognostic factor in addition to bMIPI risk group (P = 0.025), and a summed morphometric bMIPI score was useful for risk stratification of patients with MCL (P = 0.000001). These results demonstrate, for the first time, that a nuclear morphometric score is an independent prognostic factor in MCL. It is more robust than blastoid/pleomorphic morphology and can be objectively measured.


Assuntos
Aprendizado Profundo , Linfoma de Célula do Manto , Adulto , Humanos , Linfoma de Célula do Manto/patologia , Prognóstico , Fatores de Risco
5.
Pestic Biochem Physiol ; 194: 105470, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532344

RESUMO

Flavonoids are ubiquitously distributed in plants, showing pleiotropic effects in defense against abiotic and biotic stresses. Although it has been shown that seed priming with flavonoids can enhance plant resistance to abiotic stress, little is known about its potential to enhance plant tolerance to biotic stresses, especially for herbivorous insects. Here, we investigated whether treatment of tomato (Solanum lycopersicum) seeds with rutin improves plant resistance against the whitefly (Bemisia tabaci). Specifically, we measured the effect of rutin seed treatment on tomato seedling vigour, plant growth, feeding behavior and performance of B. tabaci on plants grown from control and rutin-treated seeds, and plant defense responses to B. tabaci attack. We found that seed treatment with different concentrations of rutin (viz 1, 2, 5, 10, and 20 mM) had minimal impact on shoot growth. Furthermore, seed treatment of rutin reduced the developmental rate of nymphs, the fecundity and feeding efficiency of adult females on plants grown from these seeds. The enhanced resistance of tomato against B. tabaci is closely associated with increased flavonoids accumulation, callose deposition and the expression of jasmonic acid (JA)-dependent defense genes. Additionally, callose deposition and expression of JA-dependent genes in tomato plants grown from rutin-treated seeds significantly increased upon B. tabaci infestation. These results suggest that seed treatment with rutin primes tomato resistance against B. tabaci, and are not accompanied by reductions in shoot growth. Defense priming by seed treatments may therefore be suitable for commercial exploitation.


Assuntos
Hemípteros , Solanum lycopersicum , Animais , Feminino , Hemípteros/fisiologia , Rutina/farmacologia , Flavonoides/farmacologia , Sementes
6.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372967

RESUMO

Caffeic acid phenethyl ester (CAPE) contains antibiotic and anticancer activities. Therefore, we aimed to investigate the anticancer properties and mechanisms of CAPE and caffeamide derivatives in the oral squamous cell carcinoma cell (OSCC) lines SAS and OECM-1. The anti-OSCC effects of CAPE and the caffeamide derivatives (26G, 36C, 36H, 36K, and 36M) were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test. Cell cycle and total reactive oxygen species (ROS) production were analyzed using flow cytometry. The relative protein expression of malignant phenotypes was determined via Western blot analysis. The results showed that 26G and 36M were more cytotoxic than the other compounds in SAS cells. After 26G or 36M treatment for 48 h, cell cycle S phase or G2/M phase arrest was induced, and cellular ROS increased at 24 h, and then decreased at 48 h in both cell lines. The expression levels of cell cycle regulatory and anti-ROS proteins were downregulated. In addition, 26G or 36M treatment inhibited malignant phenotypes through mTOR-ULK1-P62-LC3 autophagic signaling activated by ROS generation. These results showed that 26G and 36M induce cancer cell death by activating autophagy signaling, which is correlated with altered cellular oxidative stress.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Álcool Feniletílico , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/tratamento farmacológico , Álcool Feniletílico/farmacologia , Ácidos Cafeicos/farmacologia , Linhagem Celular Tumoral , Apoptose
7.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069259

RESUMO

Liver fibrosis is reversible when treated in its early stages and when liver inflammatory factors are inhibited. Limited studies have investigated the therapeutic effects of corylin, a flavonoid extracted from Psoralea corylifolia L. (Fabaceae), on liver fibrosis. Therefore, we evaluated the anti-inflammatory activity of corylin and investigated its efficacy and mechanism of action in ameliorating liver fibrosis. Corylin significantly inhibited inflammatory responses by inhibiting the activation of mitogen-activated protein kinase signaling pathways and the expression of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-alpha in human THP-1 and mouse RAW264.7 macrophages. Furthermore, corylin inhibited the expression of growth arrest-specific gene 6 in human hepatic stellate cells (HSCs) and the activation of the downstream phosphoinositide 3-kinase/protein kinase B pathway. This inhibited the activation of HSCs and the expression of extracellular matrix proteins, including α-smooth muscle actin and type I collagen. Additionally, corylin induced caspase 9 and caspase 3 activation, which promoted apoptosis in HSCs. Moreover, in vivo experiments confirmed the regulatory effects of corylin on these proteins, and corylin alleviated the symptoms of carbon tetrachloride-induced liver fibrosis in mice. These findings revealed that corylin has anti-inflammatory activity and inhibits HSC activation; thus, it presents as a potential adjuvant in the treatment of liver fibrosis.


Assuntos
Células Estreladas do Fígado , Fosfatidilinositol 3-Quinases , Animais , Humanos , Camundongos , Anti-Inflamatórios/efeitos adversos , Tetracloreto de Carbono , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Células Estreladas do Fígado/metabolismo , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
8.
Liver Int ; 42(11): 2548-2561, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36004563

RESUMO

Acyl-CoA thioesterase 9 (ACOT9) is a critical regulator of cellular utilization of fatty acids by catalysing the hydrolysis of acyl-CoA thioesters to non-esterified fatty acid and coenzyme A (CoA). Recently, ACOT9 was reported to participate in the pathogenesis of non-alcoholic liver disease (NAFLD), which arises from aberrant lipid metabolism and serves as a risk factor for hepatocellular carcinoma (HCC). However, the functions of ACOT9 in carcinogenesis and aberrant lipid metabolism in HCC remain unexplored. Here, we found that ACOT9 expression is significantly elevated in HCC at least partially due to the down-regulation of miR-449c-3p. Upregulation of ACOT9 is closely associated with poor prognosis for patients with HCC. Knockdown of ACOT9 expression in HCC cells significantly decreased cell proliferation, colony formation, migration and invasion, mainly through suppression of G1-to-S cell cycle transition and epithelial-to-mesenchymal transition (EMT). By contrast, forced ACOT9 expression promoted HCC growth and metastasis. In addition, we found that ACOT9 reprogrammed lipid metabolism in HCC cells by increasing de novo lipogenesis. Furthermore, we demonstrated that increased lipogenesis was involved in ACOT9-promoted HCC growth and metastasis. Altogether, we demonstrate that ACOT9 plays a critical oncogenic role in the promotion of tumour growth and metastasis by reprogramming lipid metabolism in HCC, indicating ACOT9 as a potential therapeutic target in treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Acil Coenzima A/metabolismo , Carcinogênese , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Ácidos Graxos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Metabolismo dos Lipídeos , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Metástase Neoplásica
9.
Epilepsy Behav ; 135: 108880, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35986955

RESUMO

OBJECTIVE: To identify parents' priorities when making a decision on genetic testing and antiseizure drug (ASD) options for pediatric epilepsy and their support needs for informed decision-making in multi-ethnic Asian clinical settings. METHODS: Qualitative in-depth interviews, using a semi-structured interview guide, were conducted with purposively selected parents of pediatric patients with newly diagnosed epilepsy or known diagnosis of epilepsy (n = 26). Interviews were audio recorded and transcribed verbatim. Thematic analysis was undertaken to generate themes. RESULTS: Parents' narratives showed difficulty assimilating information, while knowledge deficit and emotional vulnerability led parents' desire to defer a decision for testing and ASDs to mitigate decisional burden. Priorities for decisions were primarily based on intuitive ideas of the treatment's risks and benefits, yet very few could elaborate on tradeoffs between risks and efficacy. Priorities outside the purview of the healthcare team, such as children's emotional wellbeing and family burden of ASD administration, were also considered important. Authority-of-medical-professional heuristic facilitated the ASD decision for parents who preferred shared rather than sole responsibility for a decision. Importantly, parents' support needs for informed decision-making were very much related to the availability of support mechanisms in post-treatment decisions owing to perceived uncertainty of the chosen ASD. CONCLUSIONS: Findings suggest that multiple priorities influenced ASD decision process. To address support needs of parents for informed decision-making, more consideration should be given to post-treatment decision support through the provision of educational opportunities, building peer support networks, and developing a novel communication channel between healthcare providers and parents.


Assuntos
Tomada de Decisões , Epilepsia , Criança , Epilepsia/terapia , Humanos , Pais/psicologia , Pesquisa Qualitativa , Incerteza
10.
Support Care Cancer ; 30(8): 7031-7038, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35585204

RESUMO

PURPOSE: The purpose of this study was to identify the incidence, sites and main pathogens, and risk factors for infectious complications occurring in patients with adult acute myeloid leukemia (AML) during the first course of venetoclax combined with decitabine or azacitidine. METHODS: A retrospective cohort analysis was performed of 81 patients with AML older than 14 years who received the first cycle of venetoclax combined with a hypomethylating agent (HMA) between March 2018 and March 2021 at our institution. Infectious complications, if any, were documented. RESULTS: Among a total of 81 cases of AML, 59 (72.8%) patients occurred infections, including fever without an identifiable source (28.8%), clinically documented infections (40.7%), and microbiologically documented infections (30.5%). The most commonly isolated organism in culture was Candida albicans, followed by Klebsiella pneumonia, and Pseudomonas aeruginosa. The 4-week and 8-week mortality rates were 3.7% and 7.4%, respectively. In multivariate analysis, a high proportion of blasts in bone marrow, decreased hemoglobin level, and fever with or without a documented infection at baseline were significant independent risk factors for infectious complications. CONCLUSION: Compared with conventional chemotherapy, the incidence of infectious complications of venetoclax combined with decitabine or azacitidine significantly decreased. Pretreatment high leukemia burden and fever were independent risk factors for infections.


Assuntos
Azacitidina , Leucemia Mieloide Aguda , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Azacitidina/efeitos adversos , Compostos Bicíclicos Heterocíclicos com Pontes , Decitabina/efeitos adversos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Estudos Retrospectivos , Sulfonamidas , Resultado do Tratamento
11.
Phytother Res ; 36(5): 2116-2126, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35229911

RESUMO

The extracts from Psoralea corylifolia Linn. (P. corylifolia) seeds have been shown to display antitumor activity. To date, the prospects of this plant and its active compounds in the treatment of non-small-cell lung cancer (NSCLC) have not been thoroughly studied. In this study, we identified a novel psorachromene compound that displays selective cytotoxic effects on all NSCLC cells tested, including NSCLC cells harboring epidermal growth factor receptor (EGFR) activation mutants (H1975L858R/T790M and H1975-MS35L858R/T790M/C797S ). Psorachromene induces G1 arrest in NSCLC cells harboring wild-type EGFR but induces apoptosis in NSCLC cells harboring activating EGFR mutations. Psorachromene inhibits activated EGFR signaling and kinase activity and suppresses tumor growth of implanted H1975-MS35L858R/T790M/C797S cells in nude mice. Molecular docking analysis revealed that psorachromene could form stronger bonds with mutant EGFR than wild-type EGFR, which might account for the greater cytotoxic effects observed in NSCLC cells harboring activating EGFR mutations (H1975 and H1975-MS35) than wild-type EGFR (A549). In conclusion, it is suggested that psorachromene is an attractive agent to be further explored for its use in the treatment of NSCLC patients harboring EGFR L858R/T790M/C797S.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Simulação de Acoplamento Molecular , Mutação , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
12.
Int J Mol Sci ; 23(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35456916

RESUMO

Caffeic acid phenethyl ester (CAPE) is a natural component isolated from propolis and used in traditional medicine. We aimed to investigate the antimicrobial properties and action mechanism of CAPE and caffeamide derivatives (26G and 36M) against oral disease microbes. We resolved the minimum inhibitory and bactericidal concentrations of 26G and 36M and their stability at different temperatures and pH. We also evaluated their effect on biofilm formation and antibiotic resistance gene expression in methicillin-resistant Staphylococcus aureus (MRSA). Our results revealed that 26G and 36M showed the best anticancer and antimicrobial activities, respectively, compared with the other four caffeamide derivatives. Both 26G and 36M showed heat-dependent decreases in antimicrobial activity. The 36M derivative was stable irrespective of pH, whereas 26G was not stable under high pH conditions. Biofilm formation and antibiotic resistance-related gene expression were consistent with their respective phenotypes. This study provides evidence for the potential application of CAPE and caffeamide derivatives in dental medicine to cure or prevent oral diseases.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Álcool Feniletílico , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacologia , Álcool Feniletílico/análogos & derivados
13.
Mod Pathol ; 34(10): 1901-1911, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34103664

RESUMO

Detection of nodal micrometastasis (tumor size: 0.2-2.0 mm) is challenging for pathologists due to the small size of metastatic foci. Since lymph nodes with micrometastasis are counted as positive nodes, detecting micrometastasis is crucial for accurate pathologic staging of colorectal cancer. Previously, deep learning algorithms developed with manually annotated images performed well in identifying micrometastasis of breast cancer in sentinel lymph nodes. However, the process of manual annotation is labor intensive and time consuming. Multiple instance learning was later used to identify metastatic breast cancer without manual annotation, but its performance appears worse in detecting micrometastasis. Here, we developed a deep learning model using whole-slide images of regional lymph nodes of colorectal cancer with only a slide-level label (either a positive or negative slide). The training, validation, and testing sets included 1963, 219, and 1000 slides, respectively. A supercomputer TAIWANIA 2 was used to train a deep learning model to identify metastasis. At slide level, our algorithm performed well in identifying both macrometastasis (tumor size > 2.0 mm) and micrometastasis with an area under the receiver operating characteristics curve (AUC) of 0.9993 and 0.9956, respectively. Since most of our slides had more than one lymph node, we then tested the performance of our algorithm on 538 single-lymph node images randomly cropped from the testing set. At single-lymph node level, our algorithm maintained good performance in identifying macrometastasis and micrometastasis with an AUC of 0.9944 and 0.9476, respectively. Visualization using class activation mapping confirmed that our model identified nodal metastasis based on areas of tumor cells. Our results demonstrate for the first time that micrometastasis could be detected by deep learning on whole-slide images without manual annotation.


Assuntos
Neoplasias Colorretais/patologia , Linfonodos/patologia , Metástase Linfática/patologia , Micrometástase de Neoplasia/patologia , Aprendizado Profundo , Humanos , Estadiamento de Neoplasias
14.
Am J Hematol ; 96(3): 312-319, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33306218

RESUMO

The identification of genetic risk subgroups of T-cell acute lymphoblastic leukemia (T-ALL) may provide evidence for risk stratification and individualized treatment. We investigated the characteristics and prognostic value of tumor suppressor gene CDKN2A deletions in 101 patients with T-ALL. The CDKN2A deletion was present in 23% (23/101) of T-ALL by fluorescence in situ hybridization (FISH). The most common type of CDKN2A deletion was homozygous deletion (70%, 16/23). A lower frequency of CDKN2A deletion was found in patients with early T-cell precursor (ETP) ALL than in patients with non-ETP-ALL (10.4% vs 34.0%; P = .008). Deletion of CDKN2A was significantly associated with younger age (P = .001), higher white blood cell (WBC) count (P < .001) and higher lactate dehydrogenase (LDH) level (P = .002). Patients with CDKN2A deletion had lower 2-year overall survival (OS) and event-free survival (EFS) rates than patients without CDKN2A deletion (2-year OS: 18.6% ± 8.9% vs 47.4% ± 6.2%, P = .032; EFS: 16.4 ± 8.3 vs 38.6 ± 5.9%, P = .022). In multivariable analysis, CDKN2A deletion was an independent adverse prognostic factor for OS (P = .016). In conclusion, adult T-ALL patients with CDKN2A deletion had a poor prognosis, and these patients might benefit from intensive chemotherapy or allogeneic hematopoietic stem-cell transplantation.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/deficiência , Deleção de Genes , Genes p16 , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Adolescente , Adulto , Idoso , Aloenxertos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , China/epidemiologia , Terapia Combinada , Análise Mutacional de DNA , DNA de Neoplasias/genética , Feminino , Transplante de Células-Tronco Hematopoéticas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/mortalidade , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Prognóstico , Resultado do Tratamento , Adulto Jovem
15.
Pestic Biochem Physiol ; 171: 104744, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33357566

RESUMO

The sweetpotato whitefly Bemisia tabaci is a polyphagous crop pest distributed worldwide and frequent exposure to many different defensive secondary metabolites in its host plants. To counteract these defensive plant secondary metabolites, B. tabaci elevate their production of detoxification enzymes, including cytochrome P450 monooxygenases. Besides their tolerance to phytotoxin, B. tabaci have quickly developed resistance to various insecticides in the field. However, the relationship between host plant secondary metabolites and insecticide resistance in B. tabaci is not fully understood. In this study, the influence of plant flavonoid ingestion on B. tabaci tolerance to thiamethoxam and flupyradifurone insecticides and its possible mechanism were examined. Eight plant flavonoids were screened to evaluate their effects on B. tabaci adult sensitivity to thiamethoxam and flupyradifurone. Of which rutin, quercetin, kaempferol, myricetin and catechin significantly reduced adult sensitivity to thiamethoxam and flupyradifurone. Application of cytochrome P450 inhibitor piperonyl butoxide significantly increased the mortality of B. tabaci adults treated with thiamethoxam and flupyradifurone. Moreover, flavonoid ingestion predominantly enhanced the activity of cytochrome P450 enzyme in B. tabaci adults. Meanwhile, the expression level of three cytochrome P450 genes, CYP6CM1, CYP6CX4 and CYP4C64 were induced by the flavonoids in B. tabaci adults. In conclusion, plant flavonoids enhanced the tolerance to thiamethoxam and flupyradifurone in B. tabaci and cytochrome P450s may contribute the flavonoid adaptation. The reduced sensitivity of thiamethoxam and flupyradifurone in flavonoid-fed B. tabaci adults suggested that previous exposure to the host plant-derived flavonoids is likely to compromise the efficacy of insecticides.


Assuntos
Hemípteros , Inseticidas , 4-Butirolactona/análogos & derivados , Animais , Flavonoides/farmacologia , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Piridinas , Tiametoxam
16.
J Formos Med Assoc ; 120(9): 1695-1705, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33342707

RESUMO

BACKGROUND/PURPOSE: Palbociclib is an FDA-approved cyclin-dependent kinase (CDK) 4/6 inhibitor that has been clinically proven to be effective in breast cancer. However, its use in oral cancer is not well researched. In this study, we investigated the inhibitory activity of palbociclib against oral squamous cell carcinoma (OSCC) cells and explored the mechanism of inhibition. METHODS: The effects of palbociclib on the cytotoxicity of OSCC cells were determined by MTT and colony formation assays. ß-Galactosidase staining and cell-cycle analysis were used to determine palbociclib-induced cellular senescence and apoptosis of OSCC cells. Wound healing and transwell assays were performed to assess the effects of palbociclib treatment on migration and invasion ability of OSCC cells. Whole transcriptome sequencing was conducted to show the relationship between DNA damage repair of OSCC cells and palbociclib treatment. Palbociclib-induced DNA damage and repair capacity of OSCC cells were confirmed by comet assay and immunofluorescence confocal microscopy. Western blotting was used to verify the palbociclib-mediated changes in the CDK/pRB/c-Myc/CDC25A pathway. Finally, in vitro findings were tested in a mouse xenograft model. RESULTS: Our results showed that palbociclib can significantly inhibit the growth, migration, and invasive ability of OSCC cells and can accelerate cellular senescence and apoptosis. We found that palbociclib induced DNA damage and p21 expression through the p53-independent pathway, thereby downregulating c-Myc and CDC25A expression to inhibit cell cycle progression. In addition, palbociclib downregulated RAD51 expression to inhibit DNA damage repair ability of OSCC cell. CONCLUSION: Palbociclib was found to have anti-oral squamous cell carcinoma activity and to simultaneously induce DNA damage and inhibit its repair, and to accelerated cellular senescence and apoptosis.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Animais , Apoptose , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Proliferação de Células , Senescência Celular , Dano ao DNA , Reparo do DNA , Camundongos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Piperazinas , Piridinas , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
17.
J Formos Med Assoc ; 120(1 Pt 3): 668-678, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32800657

RESUMO

BACKGROUND/PURPOSE: Arecoline, the major alkaloid of areca nut, is known to induce reactive oxygen species (ROS) and DNA damage during oral cancer progression. This study aim to evaluate whether melatonin, an antioxidant, supported or repressed the arecoline-induced carcinogenesis phenotypes in oral squamous cell carcinoma (OSCC). METHODS: The cytotoxicity of arecoline or melatonin treatment alone and their co-treatment in the OSCC cell line OEC-M1 were analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cell cycle, cell death, and total ROS production were analyzed using flow cytometer. The protein expression was determined using western blot analysis. The genotoxicity and mutation rate were determined using micronucleus assay and hypoxanthine phosphoribosyl transferase (HPRT) forward mutation assay, respectively, in CHO-K1 cells. The ataxia telangiectasia mutated (ATM) promoter activity and DNA repair ability were determined through reporter assay. RESULTS: The result showed that both the arecoline and melatonin induced ROS production and antioxidant enzymes expression. Melatonin treatment enhanced arecoline-induced ROS production, cytotoxicity, G2/M phase arrest, and cell apoptosis in OSCC cells. On the other hand, melatonin treatment activated DNA repair activity to reverse arecoline-induced DNA damage and mutation. CONCLUSION: These results indicated that melatonin is a potential chemopreventive agent for betel quid chewers to prevent OSCC initiation and progression.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Areca , Arecolina/toxicidade , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Dano ao DNA , Humanos , Melatonina/farmacologia , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Espécies Reativas de Oxigênio , Carcinoma de Células Escamosas de Cabeça e Pescoço
18.
J Formos Med Assoc ; 120(2): 827-837, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32978046

RESUMO

BACKGROUND/PURPOSE: Honokiol and magnolol are natural components isolated from Magnolia bark that is used in traditional Chinese and Japanese herbal medicine. These two isomers are used as a component of dietary supplements and cosmetic products. In this study, we investigated the antimicrobial effect of honokiol and magnolol on pathogens causing oral diseases, their mechanism of action in biofilm formation and drug resistance of oral pathogens, and inflammatory regulation in mammalian cells. METHODS: We determined the minimum inhibitory concentration and minimum bactericidal concentration of honokiol and magnolol, and their stability at different temperatures and pH. We also evaluated their effect on biofilm formation, antibiotic-resistance gene expression in MRSA, and pro-inflammatory gene expression in mammalian cells. RESULTS: Honokiol showed better antimicrobial activity than magnolol. Both honokiol and magnolol showed stable bacterial inhibitory activity over a wide range of temperature and pH, reduced biofilm formation, and antibiotic resistance in oral pathogens. The biofilm formation- and antibiotic resistance-related gene expression was consistent with the respective phenotypes. Furthermore, these two isomers repressed the expression of pro-inflammatory genes in RAW264.7 cells. CONCLUSION: Our study provides evidence of the potential application of honokiol and magnolol in dental medicine to cure or prevent oral diseases.


Assuntos
Macrófagos , Animais , Antibacterianos/farmacologia , Compostos de Bifenilo/farmacologia , Humanos , Inflamação , Lignanas
19.
Int J Mol Sci ; 22(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34575923

RESUMO

Molecules involved in DNA damage response (DDR) are often overexpressed in cancer cells, resulting in poor responses to chemotherapy and radiotherapy. Although treatment efficacy can be improved with the concomitant use of DNA repair inhibitors, the accompanying side effects can compromise the quality of life of patients. Therefore, in this study, we identified a natural compound that could inhibit DDR, using the single-strand annealing yeast-cell analysis system, and explored its mechanisms of action and potential as a chemotherapy adjuvant in hepatocellular carcinoma (HCC) cell lines using comet assay, flow cytometry, Western blotting, immunofluorescence staining, and functional analyses. We developed a mouse model to verify the in vitro findings. We found that hydroxygenkwanin (HGK) inhibited the expression of RAD51 and progression of homologous recombination, thereby suppressing the ability of the HCC cell lines to repair DNA damage and enhancing their sensitivity to doxorubicin. HGK inhibited the phosphorylation of DNA damage checkpoint proteins, leading to apoptosis in the HCC cell lines. In the mouse xenograft model, HGK enhanced the sensitivity of liver cancer cells to doxorubicin without any physiological toxicity. Thus, HGK can inhibit DDR in liver cancer cells and mouse models, making it suitable for use as a chemotherapy adjuvant.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Dano ao DNA/efeitos dos fármacos , Flavonoides/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Reparo do DNA/efeitos dos fármacos , Modelos Animais de Doenças , Sinergismo Farmacológico , Medicamentos de Ervas Chinesas , Regulação da Expressão Gênica , Recombinação Homóloga/efeitos dos fármacos , Humanos , Camundongos , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Leveduras/efeitos dos fármacos , Leveduras/genética , Leveduras/metabolismo
20.
Plant Cell Environ ; 43(11): 2797-2811, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32955131

RESUMO

Green leaf volatiles (GLVs) can induce defence priming, that is, can enable plants to respond faster or more strongly to future stress. The effects of priming by GLVs on defence against insect herbivores and pathogens have been investigated, but little is known about the potential of GLVs to prime crops against virus transmission by vector insects. Here, we tested the hypothesis that exposure to the GLV Z-3-hexenol (Z-3-HOL) can prime tomato (Solanum lycopersicum) for an enhanced defence against subsequent Tomato yellow leaf curl virus (TYLCV) transmission by the whitefly Bemisia tabaci. Bioassays showed that Z-3-HOL priming reduced subsequent plant susceptibility to TYLCV transmission by whiteflies. Z-3-HOL treatment increased transcripts of jasmonic acid (JA) biosynthetic genes and increased whitefly-induced transcripts of salicylic acid (SA) biosynthetic genes in plants. Using chemical inducers, transgenics and mutants, we demonstrated that induction of JA reduced whitefly settling and successful whitefly inoculation, while induction of SA reduced TYLCV transmission by whiteflies. Defence gene transcripts and flavonoid levels were enhanced when whiteflies fed on Z-3-HOL-treated plants. Moreover, Z-3-HOL treatment reduced the negative impact of whitefly infestation on tomato growth. These findings suggest that Z-3-HOL priming may be a valuable tool for improving management of insect-transmitted plant viruses.


Assuntos
Begomovirus , Resistência à Doença/imunologia , Hemípteros/virologia , Hexanóis/metabolismo , Doenças das Plantas/imunologia , Folhas de Planta/imunologia , Solanum lycopersicum/imunologia , Compostos Orgânicos Voláteis/metabolismo , Animais , Begomovirus/imunologia , Ciclopentanos/metabolismo , Solanum lycopersicum/virologia , Oxilipinas/metabolismo , Doenças das Plantas/virologia , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Ácido Salicílico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA